Skip to main content
Log in

Characterization and comparison of CRISPR Loci in Streptococcus thermophilus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) consists of a series of regular repeat-spacer sequences. It can not only act as a natural immune system in most prokaryotes, but also be utilized as the tool of newly developed genome modification and evolutionary researches. Streptococcus thermophilus is an important model organism for the study and application of CRISPR systems. In present study, the occurrence and diversity of CRISPR–Cas systems in the genomes of S. thermophilus were investigated including 4 new sequenced strains CS5, CS9, CS18, CS20, and other 23 strains downloaded from NCBI website. 66 CRISPR/Cas systems were identified among these 27 strains and could divided into four subsystems according to the arrangement of Cas proteins, notably I-E, II-A, II-C and III-A. Overall, 26 type II-C systems, 18 type II-A systems, 13 type III-A systems, 9 type I-E systems were identified. It was mentioned that CS20 contained two type II-C systems which had not been identified in the other 26 S. thermophilus strains. Overall, 1,080 spacers were analyzed and blasted. Sequence identity searches of spacers implied that most spacers derived from partial sequences of exogenous DNA, including various bacteriophages and plasmids. Of note, a large number of novel spacers were found in this study, indicating the unique phage environment they have undergone, especially CS20 strain. In addition, the analysis of the cas1 and cas9 genes revealed the genetic relationship among CRISPR–Cas system in these strains. Furthermore, the analysis of CRISPR spacers also indicated protospacer adjacent motif (PAM) sequences. Summary of PAM sequences could lay the foundations for the application of S. thermophilus CRISPR–Cas system. Our results suggested CS5 and CS18 can be used as model strains in the research of CRISPR–Cas system, and CS20 might have greater application potential in gene editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achigar R, Magadán AH, Tremblay DM, Pianzzola MJ, Moineau S (2017) Phage-host interactions in Streptococcus thermophilus: genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array. Sci Rep 7:43438

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the ltp type. Front Microbiol 5:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison GE, Klaenhammer TR (1998) Phage resistance mechanisms in lactic acid bacteria. Int Dairy J 8:207–226

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2(7):17092

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, Glover CV, Graveley BR, Terns RM, Terns MP (2014) The three major types of CRISPR–Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol 93:98–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopin MC, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8:473–479

    Article  CAS  PubMed  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res 42:6091–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Xu T, Qu X, Hu T, Xu J, Zhao C (2016) New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci 17(10):1701

    Article  PubMed Central  CAS  Google Scholar 

  • Cusack S (1999) RNA–protein complexes. Curr Opin Struct Biol 9:66–73

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945

    Article  PubMed  CAS  Google Scholar 

  • Deng K, Huo G (2013) Detection and homology analysis of CRISPR in Streptococcus thermophilus. Food Sci 34:153–157 (In Chinese)

    CAS  Google Scholar 

  • Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) Hemi: a toolkit for illustrating heatmaps. PLoS One 9(11):e111988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MA, Picard-Deland É, Le Barz M, Daniel N, Marette A (2017) Chap. 13 Yogurt and health. In: Frías J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Academic Press, Cambridge, pp 305–338

    Chapter  Google Scholar 

  • Freitas M (2017) Chapter 24. The benefits of yogurt, cultures, and fermentation. In: Floch MH, Ringel Y, Walker WA (eds) The microbiota in gastrointestinal pathophysiology. Implications for human health, prebiotics, probiotics, and dysbiosis. Academic Press, Cambridge, pp 209–223

    Google Scholar 

  • Fujii W, Kakuta S, Yoshioka S, Kyuwa S, Sugiura K, Naito K (2016) Zygote-mediated generation of genome-modified mice using Streptococcus thermophilus 1-derived CRISPR/Cas system. Biochem Biophys Res Commun 477(3):473–476

    Article  CAS  PubMed  Google Scholar 

  • Garneau JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:15539–15540

    Article  CAS  Google Scholar 

  • Gasiunas G, Sinkunas T, Siksnys V (2014) Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71:449–465

    Article  CAS  PubMed  Google Scholar 

  • Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729

    Article  CAS  PubMed  Google Scholar 

  • Goh YJ, Goin C, O’Flaherty S, Altermann E, Hutkins R (2011) Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 10:S22

    Article  PubMed  PubMed Central  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007a) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:1–6

    Article  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007b) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172–182

    Article  CAS  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1(6):e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao M, Cui Y, Qu X (2018) Analysis of CRISPR–Cas system in Streptococcus thermophilus and its application. Front Microbiol 9:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatmaker EA, Riley LA, O'Dell KB, Papanek B, Graveley B, Garrett SC, Wei Y, Terns MP, Guss AM (2018) Complete genome sequence of industrial dairy strain Streptococcus thermophilus DGCC 7710. Genome Announc 6(6):e01587–e1617

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Cheng A, Wang M, Zhu D, Wang X, Zhang X (2013) Sequence analysis of the cas2 gene in riemerella anatipestifer. Adv Mater Res 647(3):570–576

    Article  CAS  Google Scholar 

  • Hidalgo-Cantabrana C, Crawley AB, Sanchez B, Barrangou R (2017) Characterization and exploitation of CRISPR loci in Bifidobacterium longum. Front Microbiol 8:1851

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Hrle A, Maier LK, Sharma K, Ebert J, Basquin C, Urlaub H, Marchfelder A, Conti E (2014) Structural analyses of the crispr protein csc2 reveal the RNA-binding interface of the type I-D cas7 family. RNA Biol 11(8):1072–1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu T, Zhang Y, Cui Y, Zhao C, Jiang X, Zhu X, Wang Y, Qu X (2018) Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk. Arch Microbiol 200(4):567–580

    Article  CAS  PubMed  Google Scholar 

  • Hynes AP, Labrie SJ, Moineau S (2016a) Programming native CRISPR arrays for the generation of targeted immunity. MBio 7:e00202–00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes AP, Lemay ML, Moineau S (2016b) Applications of CRISPR–Cas in its natural habitat. Curr Opin Chem Biol 34:30–36

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kala S, Cumby N, Sadowski PD, Hyder BZ, Kanelis V, Davidson AR, Maxwell KL (2014) HNH proteins are a widespread component of phage DNA packaging machines. Proc Natl Acad Sci USA 111:6022–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo Y, Jung D, Bae E (2012) Crystal structure of Streptococcus pyogenes csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure. PLoS One 7(3):e33401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR–Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:1–7

    Article  CAS  Google Scholar 

  • Labrie SJ, Tremblay DM, Plante PL, Wasserscheid J, Dewar K, Corbeil J, Moineau S (2015) Complete genome sequence of Streptococcus thermophilus SMQ-301, a model strain for phage-host interactions. Genome Announc 3:e480–e1415

    Article  Google Scholar 

  • Li B, Ding X, Evivie SE, Jin D, Meng Y, Huo G, Liu F (2017) Short communication: genomic and phenotypic analyses of exopolysaccharides produced by, Streptococcus thermophilus KLDS SM. J Dairy Sci 101(1):106–112

    Article  PubMed  CAS  Google Scholar 

  • Lillestøl RK, Redder P, Garrett RA, Brügger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinn J, Marraffini LA (2016) CRISPR–Cas systems optimize their immune response by specifying the site of spacer integration. Mol Cell 64:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP (2010) CRISPR analysis of bacteriophage insensitive mutants (BIMs) of industrial Streptococcus thermophilus implications for starter design. J Appl Microbiol 108(3):945–955

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740

    Article  CAS  PubMed  Google Scholar 

  • Paezespino D, Sharon I, Morovic W, Stahl B, Thomas BC, Barrangou R, Banfield JF (2015) CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. Mbio 6(2):e00262–e315

    Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus crispr/cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Chen Y, Li Z, Yang L, Chen W, Mu Z (2015) Complete genome sequence of Streptococcus thermophilus MN-BM-A02, a rare strain with a high acid-producing rate and low post-acidification ability. Genome Announc 3(5):e00979–e1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P, Siksnys V (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. Embo J 32:385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern A, Mick E, Tirosh I, Sagy O, Sorek R (2012) CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22:1985–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranges PB, Esvelt KM, Moosburner M (2013) Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Zhang X, Gao S, Rao PA, Padilla-Sanchez V, Chen Z, Sun S, Xiang Y, Subramaniam S, Rao VB, Rossmann MG (2015) Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat Commun 6:7548

    Article  PubMed  Google Scholar 

  • Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A (2002) Identification of 86 candidates for small non-messenger rnas from the archaeon archaeoglobus fulgidus. Proc Natl Acad Sci USA 99(11):7536–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay DM, Moineau S (1999) Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 255(1):63–76

    Article  CAS  PubMed  Google Scholar 

  • Turgeon N, Frenette M, Moineau S (2004) Characterization of a theta-replicating plasmid from Streptococcus thermophilus. Plasmid 51:24–36

    Article  CAS  PubMed  Google Scholar 

  • Uriot O, Denis S, Junjua M, Roussel Y, Dary-Mourot A, Blanquet-Diot S (2017) Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate? J Funct Foods 37:74–89

    Article  CAS  Google Scholar 

  • van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43:1749–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Tun HM, Leung CC, Shah NP (2014) Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep UK 4(7500):4974–4974

    CAS  Google Scholar 

  • Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, Fremaux C, Horvath P, Barrangou R, Verberkmoes NC (2012) Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PLoS One 7:e38077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant nos. 31471712; 31371827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Cui.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Supplementary file2 (DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Cui, Y. & Qu, X. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus. Arch Microbiol 202, 695–710 (2020). https://doi.org/10.1007/s00203-019-01780-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01780-3

Keywords

Navigation