Skip to main content
Log in

Investigation of the antifungal effects of algal extracts on apple-infecting fungi

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

It is known that cell extracts of various algae have antifungal activity against microorganisms in vitro. Antifungal activities of Ulva lactuca, Chlorella vulgaris, Chlorella minutissima, and Chlorella protothecoides were investigated against: Aspergillus niger, Alternaria alternata, and Penicillium expansum fungi to present their fungicide potentials. Aspergillus niger, Alternaria sp., and Penicillium expansum are typical soft-rotting fungi and cause important loss of apple fruit in the storage. In vitro antifungal activity was evaluated by agar disc diffusion assay against pathogenic apple rot fungi. As a result, almost all of the extracts obtained from algae species were revealed to have antifungal activity against selected fungal pathogens. Free radical-scavenging activity of the extracts was determined with 1,1-diphenyl-2 picryl hydrazyl (DPPH) free radical-scavenging method. Extract of C. protothecoides was determined to have a stronger antioxidant activity than other algae extracts. This study reveals that the potential of algae should be investigated for the production of natural fungicide for pharmaceutical and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abo-State MAM, Shanab SMM, Ali HEA, Abdullah MA (2015) Screening of antimicrobial activity of selected Egyptian cyanobacterial species. J Ecol Health Environ 3:7–13

    Google Scholar 

  • Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghanayem AA, Al Sobeai MS, Alhussaini SM, Joseph B, Saadabi AM (2017) Antifungal activity of Anastatica hierochuntica L. extracts against different groups of fungal pathogens: an in-vitro test. Rom Biotechnol Lett. https://doi.org/10.26327/rbl2018.147

    Article  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Antimicrobial activities of microalgae: an invited review. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Ress Cent, Badajoz, pp 1272–1280

    Google Scholar 

  • Bischoff H, Bold H (1963) Phycological studies IV. Some soil algae from enchained rock and related algal species. Univ Tex Publ, no 6318, p 95

  • Boutennoun H, Boussouf L, Kebieche M, Al-Qaoud K, Madani K (2017) In vivo analgesic, anti-inflammatory and antioxidant potentials of Achillea odorata from north Algeria. S Afr J Bot 112:307–313

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Castillo F, Hernández D, Gallegos G, Rodríguez R, Aguilar CN (2012) Antifungal properties of bioactive compounds from plants. In: Dhanasekaran D (ed) Fungic Plant Anim Dis 81–106

  • Chaiwong K, Kiatsiriroat T, Vorayos N (2012) Biochar production from freshwater algae by slow pyrolysis. Maejo Int J Sci Technol 6:186

    CAS  Google Scholar 

  • Correa H, Aristizabal F, Duque C, Kerr R (2011) Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the Octocoral Pseudopterogorgia Elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar Drugs 9:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantas DMM, Costa RMPB, Carneiro-Da-Cunha MG, Galvez AO, Drummond AR, Bezerra RS (2015) Bioproduction, antimicrobial and antioxidant activities of compounds from Chlorella vulgaris. J Bot Sci 4:12–18

    CAS  Google Scholar 

  • de Morais MG, Vaz Bda S, de Morais EG, Costa JA (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int. https://doi.org/10.1155/2015/835761

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Felix N, Brindo RA (2014) Evaluation of raw and fermented seaweed, Ulva lactuca as feed ingredient in giant freshwater prawn Macrobrachium rosenbergii. Int J Fish Aquat Stud 1:199–204

    Google Scholar 

  • García R, Pizarro C, Lavín AG (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4

    Article  PubMed  Google Scholar 

  • Gülyurt MÖ, Özçimen D, Inan B (2016) Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. Int J Mol Sci 17:579. https://doi.org/10.3390/ijms17040579

    Article  CAS  PubMed Central  Google Scholar 

  • Koçer AT, Özçimen D (2018) Investigation of the biogas production potential from algal wastes. Waste Manag Res 36(11):1100–1105

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Özçimen D (2018) Chlorella protothecoides mikroalg yağının Botrytis cinerea ve Aspergillus niger küflerine karşı antifungal etkisinin incelenmesi. J Agric Fac Ege Univ 15(02)

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:1–38

    Article  Google Scholar 

  • Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D (2013) Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy 102:24–31

    Article  CAS  Google Scholar 

  • Ross A, Jones J, Kubacki M (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  • Salem OMA, Hoballah EM, Ghazi SM, Hanna SN (2014) antimicrobial activity of microalgal extracts with special emphasize on Nostoc sp. Life Sci J 11:752–758

    Google Scholar 

  • Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49:121–128

    Article  CAS  Google Scholar 

  • Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14:1–23

    Article  Google Scholar 

  • Soxhlet F (1879) Die gewichtsaiialytische Bestimmung des Milchfettes; von. Polytech 232:461

    Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726

    Article  CAS  PubMed  Google Scholar 

  • Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vehapi M, Yilmaz A, Özçimen D (2018a) Antifungal activities of Chlorella vulgaris and Chlorella minutissima Microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Rom Biotechnol Lett 1:1

    Google Scholar 

  • Vehapi M, Yilmaz A, Özçimen D (2018b) Investigation of Antibacterial and Antioxidant Activities of some algae species. J Biotechnol 280:80

    Article  Google Scholar 

  • Yilmaz A, Bozkurt F, Cicek PK, Dertli E, Durak MZ, Yilmaz MT (2016a) A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innov Food Sci Emerg Technol 37:74–83

    Article  CAS  Google Scholar 

  • Yilmaz A, Ermis E, Boyraz N (2016b) Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot diseases Colletotrichum gloeosporioides, Botrytis cinerea and Penicillium expansum. J Food Saf Food Qual 67:113–148

    Google Scholar 

Download references

Funding

The authors acknowledge financial support from the Yildiz Technical University Scientific Research project (2016-07-04-YL13) provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Özçimen.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vehapi, M., Koçer, A.T., Yılmaz, A. et al. Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Arch Microbiol 202, 455–471 (2020). https://doi.org/10.1007/s00203-019-01760-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01760-7

Keywords

Navigation