Skip to main content
Log in

Diversity of endophytic bacterial community inhabiting in tropical aerobic rice under aerobic and flooded condition

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The role and activity of bacterial endophytes remains largely unexplored and detail insight into Indian rice agro ecosystem is still little explored. In this study, we examined the diversity of endophytic bacteria in aerobic rice (variety ARB6) under aerobic and flooded field conditions. Based on 16S rRNA gene RFLP cloning sequencing, 900 clones with 144 representatives (72 aerobic and 72 flooded) revealed majority of clones affiliated to Gammaproteobacteria (64.58%), Betaproteobacteria (9.72%), Alphaproteobacteria (17.36), Firmicutes (6.26%) and Bacteroidetes (2.08). The study suggests that the aerobic rice variety harbours plant growth promoting (PGP) genera (viz. Pantoea, Enterobacter, Paenibacillus, etc). Investigations on aerobic rice under aerobic and flooded conditions revealed high richness and diversity of endophytic bacteria under aerobic condition inferring that the endophytic bacteria are beneficial for rice growth and productivity, and hence, would be helpful in designing better strategies for rice cultivation under drought or water scarce conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atlin GN, Lafitte HR, Tao D et al (2006) Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crops Res 97:43–52

    Google Scholar 

  • Backermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene deoxygenase genes from coal-tar waste contaminated aquifer waters. Microbial Ecol 44:95–106

    Google Scholar 

  • Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V (2016) Rice bacterial endophytes: Isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8:388–398

    CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    CAS  PubMed  Google Scholar 

  • Bouman BAM, Peng S, Castaneda AR et al (2005) Yield and water use of irrigated tropical aerobic rice systems. Agri Water Manag 74:87–105

    Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in population. Scand J Stat 11:265–270

    Google Scholar 

  • Chaudhry V, Sharma S, Bansal K, Patil PB (2017) Glimpse into the genomes of rice endophytic bacteria: diversity and distribution of Firmicutes. Front Microbiol 7:2115

    PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    CAS  Google Scholar 

  • De Boer W, Wagenaar AK, Klein Gunnewiek PJA et al (2007) In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol Ecol 59:177–185

    PubMed  Google Scholar 

  • Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Yong-Guan Z (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 95:1–13

    Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Felsenstein J (1989) Mathematics vs. evolution: mathematical evolutionary theory. Science 246:941–942

    CAS  PubMed  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    CAS  PubMed  Google Scholar 

  • Ferrando L, Fernández Scavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91(9):1–12

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    CAS  PubMed  Google Scholar 

  • Hardoim PR, Andreote FD, Reinhold-Hurek B et al (2011) Rice root-associated bacteria—insights in community structures across ten cultivars. FEMS Microbiol Ecol 77:154–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 7:e30438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253

    PubMed  PubMed Central  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Research Institute (2008) Annual report 0074-7793

  • Kaga H, Mano H, Tanaka F et al (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162

    PubMed  Google Scholar 

  • Knauth S, Hurek T, Brar D et al (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    CAS  PubMed  Google Scholar 

  • Kunda P, Dhala PK, Mukherjee A (2018) Endophytic bacterial community of rice (Oryza sativa L.) from coastal saline zone of West Bengal: 16S rRNA gene based metagenomics approach. Meta Gene 18:79–86

    Google Scholar 

  • Lafitte R, Courtois B, Arraudeau M (2002) Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crops Res 75:171–190

    Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    PubMed  Google Scholar 

  • Mareque C, Freitas da Silva T, Vollú RE, Martín Beracochea, Seldin L, Battistoni F (2018) The endophytic bacterial microbiota associated with sweet Sorghum (Sorghum bicolor) is modulated by the application of chemical N-fertilizer to the field. Int J Genom 11:1–10

    Google Scholar 

  • Moronta-Barrios F, Gionechetti F, Pallavicini A et al (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6:1–20

    Google Scholar 

  • Okubo T, Ikeda S, Sasaki K, Ohshima K, Hattori M, Sato T, Minamisawa K (2014) Phylogeny and functions of bacterial communities associated with field-grown rice shoots. Microbes Environ 29:329–332

    PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006) An endoglucanase is involved in infection of rice roots by the not cellulose-metabolizing endophyte Azoarcus sp. BH72. Mol Plant Microbe Interact 19:181–188

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for re-constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X et al (2002) Advances in rhizobium research. Crit Rev Plant Sci 21:323–378

    CAS  Google Scholar 

  • Sessitsch A, Hardoin P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    CAS  PubMed  Google Scholar 

  • Shashidhar HE (2007) Rice root system under aerobic condition. Euphytica 129:290–294

    Google Scholar 

  • Shashidhar HE, Kanbar TM, Raveendra GM et al (2013) Breeding for drought resistance using whole plant architecture-conventional and molecular approach, plant breeding from laboratories to fields, Sven Bode Andersen. (Ed.) INTECH Publications. pp 34

    Google Scholar 

  • Silva MF, Antônio CS, Oliveira PJ et al (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243

    Google Scholar 

  • Singh A, Singh RS, Upadhyay SN et al (2012a) Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil. FEMS Microbiol Ecol 82:118–134

    CAS  PubMed  Google Scholar 

  • Singh AK, Rai GK, Singh M, Dubey SK (2012b) Bacterial community structure in the rhizosphere of a Cry1Ac Bt-brinjal crop and comparison to its non-transgenic counterpart in the tropical soil. Microbial Ecol 66:927–939

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA 4.0: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680

    Google Scholar 

  • UNESCO addressing water scarcity (2007) unesdoc.unesco.org/image /0015/ 001502/ 150221e.pd

  • Verma SC, Singh A, Chowdhury SP et al (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    CAS  PubMed  Google Scholar 

  • Vishwakarma P, Dubey SK (2010) Diversity of methanotroph in urea-fertilized tropical rice agroecosystem. Indian J Microbiol 50:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma P, Dumont MG, Bodrossy L, Dubey SK (2009) Ecological and molecular analyses of the rhizospheric methanotroph community in tropical rice soil: effect of crop phenology and land use history. Curr Sci 96:1082–1089

    CAS  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol 209:1–13

    Google Scholar 

  • Wang J, Xue C, Song Y, Wang L et al (2016a) Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front Microbiol 7:1207

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016b) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L). Microbiol Res 189:1–8

    Google Scholar 

  • You MZ, Nishiguchi T, Saito A et al (2005) Expression of the nif H gene of a Herbaspirillum endophyte in wild rice species: daily rhythm during the light-dark cycle. Appl Environ Microbiol 71:8183–8190

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi with Grant number SB/FT/LS-246/2012. The authors hereby acknowledge HE Sashidhar, Aerobic Rice Laboratory, Department of Plant Biotechnology UAS Bangalore for providing experimental plots to conduct the work. Jitendra Kesari, Institute of post harvest and food Sciences Israel is acknowledged for statistical analysis. We are also thankful to the Coordinator CAS and FIST, Department of Botany, BHU, Varanasi for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Dubey.

Ethics declarations

Conflict of interest

Authors have no conflict of interest for present submission.

Additional information

Communicated by Jorge Membrillo-Hernández.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, P., Dubey, S.K. Diversity of endophytic bacterial community inhabiting in tropical aerobic rice under aerobic and flooded condition. Arch Microbiol 202, 17–29 (2020). https://doi.org/10.1007/s00203-019-01715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01715-y

Keywords

Navigation