Skip to main content
Log in

Staphylococcus aureus autolysins interact with caprine vitronectin without involving the heparin binding domain and the second arginine–glycine–aspartic acid motif of the host protein

  • OriginalPaper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Many bacteria exploit host proteins for their colonization. Vitronectin (Vn), present in the blood and extracellular matrix, is one such protein that acts as a bridge between the bacteria and the host tissues leading to infection. In this study, Vn binding protein of Staphylococcus aureus (COL strain) (SaVnBP) has been characterized as autolysin(s) based on mass spectrometry data and the ability of these proteins to degrade S. aureus substratum. Deletion of the heparin-binding domain (residues 341–380) from the Vn did not affect its ability to interact with SaVnBP. Similarly, change of R to A or D to A in the second arginine–glycine–aspartic (RGD2) motif of Vn had no negative effect on protein–protein interaction. These results imply that the primary heparin-binding site and the second RGD motif of caprine Vn may not be involved in the initial step of S. aureus colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Vn:

Vitronectin

HBD:

Heparin-binding domain

RGD:

Arg–gly–asp

SaVnBP:

S. aureus Vn binding protein

References

  • Chhatwal GS, Preissner KT, Muller-Berghaus G, Blobel H (1987) Specific binding of the human S protein (vitronectin) to Streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun 55:1878–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duensing TD, Wing JS, Van-Putten JPM (1999) Sulfated polysaccharide directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 67:4463–4468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TJ (2004) The Staphylococcus aureus “superbug”. J Clin Invest 114:1693–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois PP, Preissner KT, Herrmann M, Haugland RP, Vaudaux P, Lew DP, Krause KH (1999) Vitronectin interaction with glycosaminoglycans. Kinetics, structural determinants, and role in binding to endothelial cells. J Biol Chem 274:37611–37619

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, Peters G (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149:2769–2778

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Hartleib J, Hussain MS, Peters G (2005) The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 73:4793–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschhausen N, Schlesier T, Peters G, Heilmann C (2012) Characterization of the modular design of the autolysin/adhesin aaa from Staphylococcus aureus. PLoS One 77:e40353. https://doi.org/10.1371/journal.pone.0040353

    Article  CAS  Google Scholar 

  • Hussain M, Becker K, Eiff C von, Schrenzel J, Peters G, Herrmann M (2001) Identification and characterization of a novel 38.5 kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183:6778–6786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler TP, Gisch N, Binsker U, Schlag M, Darm K, Völker U, Zähringer U, Hammerschmidt S (2013) Repeating structures of the major staphylococcal autolysin are essential for the interaction with human thrombospondin-1 and vitronectin. J Biol Chem 289:4070–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsuzawa H, Sugai M, Nakashima S, Yamada S, Matsumoto A, Oshida T, Suginaka H (1997) Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus. Microbiol Immunol 41:469–479

    Article  CAS  PubMed  Google Scholar 

  • Leavesley DI, Kashyap AS, Croll T, Sivaramakrishnan M, Shokoohmand A, Hollier BG, Upton Z (2013) Vitronectin—master controller or micromanager? IUBMB Life https://doi.org/10.1002/iub.1203

    Article  PubMed  Google Scholar 

  • Li D, Kirill G, Kjeld S, Puzas E, O’Keefe RJ, Awad H, Drissi H, Schwartz EM (2008) Quantitative mouse model of implant associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthopaedic Res 26:96–105

    Article  CAS  Google Scholar 

  • Liang OD, Flock JI, Wadstrom T (1995) Isolation and characterisation of a vitronectin-binding surface protein from Staphylococcus aureus. Biochim Biophys Acta 1250:110–116

    Article  PubMed  Google Scholar 

  • Liang OD, Preissner KT, Chhatwal GS (1997) The hemopexin type repeats of human vitronectin are recognized by Streptococcus pyogenes. Biochem Biophys Res Commun 234:445–449

    Article  CAS  PubMed  Google Scholar 

  • Mahawar M, Joshi P (2007) Goat vitronectin: characterization and binding to Staphylococcus aureus. Comp Biochem Physiol 149:410–418

    Article  CAS  Google Scholar 

  • Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci USA 92:285–289

    Article  CAS  PubMed  Google Scholar 

  • Porayath C, Suresh MK, Biswas R, Nair BG, Mishra N, Pal S (2018) Autolysin mediated adherence of Staphylococcus aureus with fibronectin, gelatin and heparin. Int J Biol Macromol 110:170–184

    Google Scholar 

  • Qi D, Scholthof KB (2008) A one step PCR-based method for rapid and efficient site-directed fragment deletion, insertion and substitution mutagenesis. J Virol Methods 149:85–90

    Article  CAS  PubMed  Google Scholar 

  • Rao TP, Prasanth TL, Murugavel S, Devi K, Joshi P (2017) Identification of second arginine–glycine–aspartic acid motif of caprine vitronectin as the complement C9 binding site and its implication in bacterial infection. Microbiol Immunol. https://doi.org/10.1111/1348-0421.12468

    Article  Google Scholar 

  • Sahoo S, Murugavel S, Devi K, Vedamurthy GV, Gupta SC, Singh BP, Joshi P (2013) Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C9 and inhibits its activity. Parasite Immunol 35:457–467

    Article  CAS  PubMed  Google Scholar 

  • Schvartz I, Seger D, Shaltiel S (1999) Vitronectin. Int J Biochem Cell Biol 31:539–544

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Kawada M, Nakano Y, Toyoshima K, Yamashita Y (2005) Identification and characterization of an autolysin encoding gene of Streptococcus mutans. Infec Immun 73:3512–3520

    Article  CAS  Google Scholar 

  • Singh B, Su YC, Riesbeck K (2010) Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 78:545–560

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Su YC, Riesbeck K (2011) Vitronectin in host pathogen interactions and antimicrobial therapeutic applications. Cent Eur J Biol 6:973–980

    CAS  Google Scholar 

  • Todor K (2004) Todar’s online textbook of bacteriology. Department of Bacteriology, University of Wisconsin-Madison, USA

    Google Scholar 

  • Varrone JJ, Li D, Daiss JL, Schwarz EM (2011) Antiglucosaminadase Monoclonal antibodies as a passive immunization for methicillin—resistant Staphylococcus aureus (MRSA) orthopaedic infections. Bonekey Osteovis 1:187–194

    Google Scholar 

Download references

Acknowledgements

We thank Director, IVRI for providing the facilities and our colleagues for encouragement. PJ was supported by grants from the Indian Council of Medical Research, New Delhi and the Department of Biotechnology, Government of India. HP and LP were supported by IVRI and MS by ICMR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paritosh Joshi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, H., Sokkalingam, M., Prasanth, L. et al. Staphylococcus aureus autolysins interact with caprine vitronectin without involving the heparin binding domain and the second arginine–glycine–aspartic acid motif of the host protein. Arch Microbiol 201, 639–647 (2019). https://doi.org/10.1007/s00203-019-01624-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01624-0

Keywords

Navigation