Advertisement

Seonamhaeicola acroporae sp. nov., a marine species of the family Flavobacteriaceae isolated from the hard coral Acropora formosa

  • Jaewoo Yoon
  • Mina Yasumoto-Hirose
  • Hiroaki Kasai
Original Paper
  • 24 Downloads

Abstract

A novel marine flavobacterial species, designated 3KA7-17T, was isolated from the hard coral Acropora formosa D. collected in Japan. The strain was pale-orange pigmented, Gram-stain negative, strictly aerobic, coccus shaped, and non-motile. Preliminary analysis based on the 16S rRNA gene sequence revealed an affiliation with the family Flavobacteriaceae of the phylum Bacteroidetes, and it had the greatest sequence similarity (96.0%) to Seonamhaeicola algicola Gy8T. The DNA G + C content was 34.3 mol%. MK-6 was the major menaquinone, with iso-C15:1 H and/or C13:0 3-OH (24.3%), iso-C15:0 (19.5%), iso-C15:0 3-OH (14.2%), and iso-C17:0 3-OH (15.9%) as the main (> 10%) cellular fatty acids. The major polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminolipids, and two unidentified lipids. Based on distinct phylogenetic and phenotypic evidence, the strain represents a novel species of the genus Seonamhaeicola, for which the name Seonamhaeicola acroporae sp. nov. is proposed and the type strain is 3KA7-17T (= KCTC 62713T = NBRC 113410T).

Keywords

Bacteroidetes Flavobacteriaceae Seonamhaeicola acroporae sp. nov. Acropora formosa 16S rRNA gene Polyphasic taxonomy 

Notes

Acknowledgements

This research was supported by the Bisa Research Grant of Keimyung University in 2018.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

203_2018_1589_MOESM1_ESM.pptx (9.1 mb)
Transmission electron micrograph of a negatively stained cell of strain 3KA7-17T. Bar, 200 nm (PPTX 9349 KB)
203_2018_1589_MOESM2_ESM.pptx (780 kb)
Two-dimensional thin-layer chromatograms showing the total polar lipid compositions of 3KA7-17T. Total polar lipids were detected by spraying the plate with molybdatophosphoric acid, molybdenum blue, ninhydrin, and α-naphthol. PE: phosphatidylethanolamine, AL: unidentified aminolipid, L: unidentified lipid (PPTX 780 KB)
203_2018_1589_MOESM3_ESM.xls (48 kb)
Supplementary material 3 (XLS 48 KB)

References

  1. Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:253–266CrossRefGoogle Scholar
  2. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedPubMedCentralGoogle Scholar
  3. Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433PubMedPubMedCentralGoogle Scholar
  4. Fang DB, Han JR, Liu Y, Du ZJ (2017) Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 67:4857–4861CrossRefPubMedGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166CrossRefGoogle Scholar
  8. Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241CrossRefGoogle Scholar
  9. Hertel C, Schmidt G, Fischer M, Oellers K, Hammes WP (1998) Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Appl Environ Microbiol 64:1359–1365PubMedPubMedCentralGoogle Scholar
  10. Jooste PJ (1985) The taxonomy and significance of Flavobacterium–Cytophaga strains from dairy sources. PhD thesis, University of the Orange Free State, South AfricaGoogle Scholar
  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through the comparative studies of sequence evolution. J Mol Evol 16:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kirchman DL (2002) The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  13. Lewin RA, Lounsbery DM (1969) Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol 58:145–170CrossRefPubMedGoogle Scholar
  14. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  15. O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2006) Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 56:169–180CrossRefPubMedGoogle Scholar
  16. Park S, Won SM, Park DS, Yoon JH (2014) Seonamhaeicola aphaedonensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64:1876–1881CrossRefPubMedGoogle Scholar
  17. Power DA, Johnson JA (2009) Difco™ and BBL™ manual: manual of microbiological culture media, 2nd edn. Becton Dickinson and Company, Sparks, pp 359–360Google Scholar
  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  19. Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  22. Yoon J, Kang DH (2018) Terasakiella salincola sp. nov., a marine alphaproteobacterium isolated from seawater, and emended description of the genus Terasakiella. Int J Syst Evol Microbiol 68:2048–2053CrossRefPubMedGoogle Scholar
  23. Yoon J, Lee KC, Lee JS (2016) Cribrihabitans pelagius sp. nov., a marine alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 66:3195–3200CrossRefPubMedGoogle Scholar
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zeng YX, Zhang F, He JF, Lee SH, Qiao ZY, Yu Y, Li HR (2013) Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek 103:1309–1319CrossRefPubMedGoogle Scholar
  26. Zhou YX, Du ZJ, Chen GJ (2016) Seonamhaeicola algicola sp. nov., a complex-polysaccharide-degrading bacterium isolated from Gracilaria blodgettii, and emended description of the genus Seonamhaeicola. Int J Syst Evol Microbiol 66:2064–2068CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of PharmacyKeimyung UniversityDaeguRepublic of Korea
  2. 2.Marine Biotechnology InstituteKamaishiJapan
  3. 3.Marine Biosciences Kamaishi Research Laboratory, Kitasato UniversityOfunatoJapan
  4. 4.Tropical Technology PlusUrumaJapan

Personalised recommendations