Skip to main content
Log in

Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Environmental contamination by Te and Se oxyanions has become a serious concern, with the search for green, ecologically friendly methods for removal gaining ground. Bacteria capable of reducing these highly toxic compounds to a virtually non-toxic elemental form could provide a solution. In this study, four strains of bacteria with potential for bioremediation of Te and Se oxyanions were investigated. Under aerobic conditions over 48 h, Erythromicrobium ramosum, strain E5 removed 244 µg/ml tellurite and 98 µg/ml selenite, Erythromonas ursincola, KR99 203 µg/ml tellurite and 100 µg/ml selenite, AV-Te-18 98 µg/ml tellurite and 103 µg/ml selenite and ER-V-8 93 µg/ml tellurite and 103 µg/ml selenite. In the absence of oxygen, AV-Te-18 and ER-V-8 removed 10 µg/ml tellurite after 24 and 48 h, respectively and 46 and 25 µg/ml selenite, respectively, over 48 h. ER-V-8 removed 14 µg/ml selenate after 5 days. This highlights the great potential of these microbes for use in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arenas F, Pugin B, Henriquez N, Areanas-Salinas M, Diaz-Vasquez W, Pozo M, Munoz C, Chasteen T, Perez-Donoso J, Vasquez C (2014) Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antartica. Polar Sci 8:40–52

    Article  Google Scholar 

  • Bajaj M, Winter J (2014) Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Microb Cell Fact 13:168–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar I, Kim S-K (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8(10):2673–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonificio W, Clarke D (2014) Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J Appl Microbiol 117(5):1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Borghese R, Borsetti F, Foladori P, Ziglio G, Zannoni D (2004) Effects of the metalloid oxyanion tellurite (TeO3 2–) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol 70(11):6595–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cantafio A, Hagen K, Lewis G, Bledsoe T, Nunan K, Macy J (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62(9):3298–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Csotonyi J, Stackebrandt E, Yurkov V (2006) Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol 72(7):4950–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai G, Paul J (1977) Simultaneous spectrophotometric determination of tetravalent and hexavalent selenium. Microchem J 22(2):176–181

    Article  CAS  Google Scholar 

  • Dogan N, Kantar C, Gulcan S, Dodge C, Yilmaz B, Mazmanci M (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45(6):2278–2285

    Article  CAS  PubMed  Google Scholar 

  • Elwakeel K, Atia A, Donia A (2009) Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy 97(1–2):21–28

    Article  CAS  Google Scholar 

  • Epelde L, Lanzen A, Blanco F, Urich T, Garbisu C (2015) Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol Ecol 91(1):1–11

    Article  PubMed  Google Scholar 

  • Fujii R, Deverel S, Hatfield D (1988) Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California. Soil Sci Soc Am J 52(5):1274–1283

    Article  CAS  Google Scholar 

  • Gadd G (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Hunter W, Kuykendall D (2005) Removing selenite from groundwater with an in situ biobarrier: laboratory studies. Curr Microbiol 50:145–150

    CAS  PubMed  Google Scholar 

  • Jadhav J, Kalyani D, Telke A, Phugare S, Govindwar S (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Javed S, Sarwar A, Tassawar M (2016) Conversion of selenite to elemental selenium by indigenous bacteria isolated from polluted areas. Chem Speciat Bioavailab 27(4):162–168

    Article  Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Tech 38:924–931

    Article  CAS  Google Scholar 

  • Kim D-H, Kanaly R, Hur H-G (2012) Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Bioresour Technol 125:127–131

    Article  CAS  PubMed  Google Scholar 

  • Li H, Feng Y, Zou X, Luo X (2009) Study on microbial reduction of vanadium metallurgical waste water. Hydrometallurgy 99:13–17

    Article  CAS  Google Scholar 

  • Li B, Liu N, Li Y, Jing W, Fan J, Li D, Zhang L, Zhang X, Zhang Z, Wang L (2014a) Reduction of selenite to red elemental selenium by Rhodopseudomonas palustris strain N. PLoS One 9(4):e95955

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D-B, Cheng Y-Y, Wu C, Li W-W, Li N, Yang Z-C, Tong Z-H, Yu H-Q (2014b) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735. https://doi.org/10.1038/srep03735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luek A, Brock C, Rowan D, Rasmussen J (2014) A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ 33:295–306

    Article  CAS  Google Scholar 

  • Macy J, Lawson S, DeMoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594

    Article  CAS  Google Scholar 

  • Maltman C, Yurkov V (2014) The impact of tellurite on highly resistant marine bacteria and strategies for its reduction. Int J Environ Eng Nat Resour 1(3):109–119

    Google Scholar 

  • Maltman C, Yurkov V (2015) The effect of tellurite on highly resistant freshwater aerobic anoxygenic phototrophs and their strategies for reduction. Microorganisms 3(4):826–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltman C, Piercey-Normore M, Yurkov V (2015) Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings. Extremophiles 19(5):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Maltman C, Walter G, Yurkov V (2016) A diverse community of metal(loid) oxide respiring bacteria are associated with tube worms in the vicinity of the Juan de Fuca Ridge black smoker field. PLoS One 11(2):e0149812

    Article  PubMed  PubMed Central  Google Scholar 

  • Maltman C, Donald L, Yurkov V (2017a) Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 associated with the deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers. Arch Microbiol 199(8):1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Maltman C, Donald L, Yurkov V (2017b) Tellurite and tellurate reduction by the aerobic anoxygenic phototroph Erythromonas ursincola, strain KR99 is carried out by a novel membrane associated enzyme. Microorganisms 5(20):https://doi.org/10.3390/microorganisms5020020

    Article  PubMed Central  Google Scholar 

  • Molina R, Burra R, Perez-Donoso J, Elias A, Munoz C, Montes R, Chasteen T, Vasquez C (2010) Simple, fast, and sensitive method for quantification of tellurite in culture media. Appl Environ Microbiol 76(14):4901–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore M, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174(5):1505–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper D, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  CAS  PubMed  Google Scholar 

  • Prakash V, Rao N, Bhatnagar A (2001) Linear optical properties of niobium-based tellurite glasses. Solid State Commun 119:39–44

    Article  Google Scholar 

  • Rajwade J, Paknikar K (2003) Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 71:243–248

    Article  CAS  Google Scholar 

  • Ramon-Ruiz A, Field J, Wilkening J (2016) Recovery of elemental tellurium nanoparticles by the reduction of tellurium oxyanions in a methanogenic microbial consortium. Environ Sci Technol 50(3):1492–1500

    Article  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Beatty T, Yurkov V (2002) Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific ocean. Appl Environ Microbiol 68(9):4613–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero C, Boukhalfa H, Forsythe J, Lack J, Hersman L, Nue M (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7(1):88–97

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Nongkynrih J (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Soudi M, Ghazvini P, Khajeh K, Gharavi S (2009) Bioprocessing of seleno-oxyanions and tellurite in a novel Bacillus sp. strain STG-83: a solution to removal of toxic oxyanions in presence of nitrate. J Hazard Mater 165:71–77

    Article  CAS  PubMed  Google Scholar 

  • Staicu L, van Hullecusch E, Lens P (2017) Industrial selenium pollution: wastewaters and physical-chemical treatment technologies. In: van Hullebusch E (ed) Bioremediation of selenium contaminated wastewater. Springer, Cham

    Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 185(10):8147–8155

    Article  PubMed  Google Scholar 

  • Yang J, Tang Y, Yang K, Rouff A, Elzinga E, Hyang J (2014) Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. J Hazard Mater 264:498–504

    Article  CAS  PubMed  Google Scholar 

  • Yong Y-C, Zhong J-J (2010) Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45(12):1937–1943

    Article  CAS  Google Scholar 

  • Yurkov V, Beatty T (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62(3):695–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst J, Hugenholtz P, Golecki J, Gad’on N, Gorlenko V, Kompantseva E, Drews G (1994) Phylogenetic positions of novel aerobic bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Jappe J, Vermeglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62(11):4195–4198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yurkov V, Stackebrandt E, Buss O, Vermeglio A, Gorlenko V, Beatty T (1997) Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. Nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47(4):1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Krieger S, Stackebrandt E, Beatty T (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment–protein complexes. J Bacteriol 181(15):4517–4525

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science and Engineering Research Council of Canada Discovery grant held by V. Yurkov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yurkov.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltman, C., Yurkov, V. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Arch Microbiol 200, 1411–1417 (2018). https://doi.org/10.1007/s00203-018-1555-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1555-6

Keywords

Navigation