Skip to main content
Log in

Identification and characterization of the S-layer formed on the sheath of Thiothrix nivea

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Thiothrix nivea is a filamentous sulfur-oxidizing bacterium common in activated sludge and its filament is covered with a polysaccharide layer called sheath. In this study, we found that T. nivea aggregates under acidic conditions. A hexagonal lattice pattern, a typical morphological feature of proteinaceous S-layers, was newly observed on the surface of the sheath by transmission electron microscopy. The pattern and the acid-dependent aggregation were not observed in T. fructosivorans, a relative sheath-forming bacterium of T. nivea. The putative S-layer of T. nivea was detached by washing with unbuffered tris(hydroxymethyl)aminomethane base (Tris) solution and a protein of 160 kDa was detected by electrophoresis. Based on partial amino acid sequences of the protein, its structural gene was identified. The gene encodes an acidic protein which has a putative secretion signal and a Ca2+-binding domain. The protein was solubilized with urea followed by dialysis in the presence of calcium. A hexagonal lattice pattern was observed in the aggregates formed during dialysis, revealing that the protein is responsible for S-layer formation. Biosorption ability of copper, zinc, and cadmium onto the T. nivea filament decreased upon pretreatment with Tris, demonstrating that the S-layer was involved in metal adsorption. Moreover, aggregation of Escherichia coli was promoted by acidification in the presence of the S-layer protein, suggesting that the protein is potentially applicable as an acid-driven flocculant for other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams LF, Ghiorse WC (1987) Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aruga S, Kamagata Y, Kohno T, Hanada S, Nakamura K, Kanagawa T (2002) Characterization of filamentous Eikelboom type 021N bacteria and description of Thiothrix disciformis sp. nov. and Thiothrix flexilis sp. nov. Int J Syst Evol Microbiol 52:1309–1316

    PubMed  CAS  Google Scholar 

  • Chernousova E, Gridneva E, Grabovich M, Dubinina G, Akimov V, Rossetti S, Kuever J (2009) Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs. Int J Syst Evol Microbiol 59:3128–3315

    Article  PubMed  CAS  Google Scholar 

  • Daligault H, Lapidus A, Zeytun A, Nolan M, Lucas S, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Rohde M, Verbarg S, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T (2011) Complete genome sequence of Haliscomenobacter hydrossis type strain (O). Stand Genomic Sci 4:352–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deinema MH, Henstra S, von Elgg EW (1977) Structural and physiological characteristics of some sheathed bacteria. Antonie Van Leeuwenhoek 43:19–29

    Article  PubMed  CAS  Google Scholar 

  • Eikelboom DH (1975) Filamentous organisms observed in activated sludge. Water Res 9:365–388

    Article  Google Scholar 

  • Emerson D, Ghiorse WC (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J Bacteriol 175:7808–7818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaudy E, Wolfe RS (1962) Composition of an extracellular poly-saccharide produced by Sphaerotilus natans. Appl Microbiol 10:200–205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Graham LL, Harris R, Villiger W, Beveridge TJ (1991) Freeze-substitution of gram-negative eubacteria: general cell morphology and envelope profiles. J Bacteriol 173:1623–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoeniger JF, Tauschel HD, Stokes JL (1973) The fine structure of Sphaerotilus natans. Can J Microbiol 19:309–313

    Article  PubMed  CAS  Google Scholar 

  • Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, Jones JG, Yaguchi J, Head IM (1999) Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov. Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 49:1817–1827

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Kondo K, Narizuka R, Endo T, Katahira M, Kawamura I, Sato M, Takeda M (2016) Presence of N-l-lactyl-d-perosamine residue in the sheath-forming polysaccharide of Thiothrix fructosivorans. Int J Biol Macromol 82:772–779

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Endo T, Fujiwara A, Kondo K, Katahira M, Nittami T, Sato M, Takeda M (2017) Elongation pattern and fine structure of the sheaths formed by Thiothrix nivea and Thiothrix fructosivorans. Int. J Biol Macromol 95:1280–1288

    Article  CAS  Google Scholar 

  • Kondo K, Takeda M, Ejima W, Kawasaki Y, Umezu T, Yamada M, Koizumi J, Mashima T, Katahira M (2011) Study of a novel glycoconjugate, thiopeptidoglycan, and a novel polysaccharide lyase, thiopeptidoglycan lyase. Int J Biol Macromol 48:256–262

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Umezu T, Shimura S, Narizuka R, Koizumi J, Mashima T, Katahira M, Takeda M (2013) Structure of perosamine-containing polysaccharide, a component of the sheath of Thiothrix fructosivorans. Int J Biol Macromol 59:59–66

    Article  PubMed  CAS  Google Scholar 

  • Kunoh T, Nakanishi M, Kusano Y, Itadani A, Ando K, Matsumoto S, Tamura K, Kunoh H, Takada J (2017) Biosorption of metal elements by exopolymer nanofibrils excreted from Leptothrix cells. Water Res 122:139–147

    Article  PubMed  CAS  Google Scholar 

  • Lapidus A, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Brambilla EM, Rohde M, Abt B, Verbarg S, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T (2011) Genome sequence of the filamentous, gliding Thiothrix nivea neotype strain (JP2T). Stand Genomic Sci 5:398–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larkin JM, Shinabarger DL (1983) Characterization of Thiothrix nivea. Int J Syst Bacteriol 33:841–846

    Article  Google Scholar 

  • Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74:1517–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyazato N, Yamamoto-Ikemoto R, Takamatsu S (2006) Microbial community change of sulfate reduction and sulfur oxidation bacteria in the activated sludge cultivated with acetate and peptone. Water Sci Technol 54:111–119

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PH, de Muro MA, Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2:389–298

    Article  PubMed  CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633

    Article  PubMed  CAS  Google Scholar 

  • Pagnanelli F, Beolchini F, Di Biase A, Vegliò F (2004) Biosorption of binary heavy metal systems onto Sphaerotilus natans cells confined in an UF/MF membrane reactor: dynamic simulations by different Langmuir-type competitive models. Water Res 38:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Romano AH, Geason DJ (1964) Pattern of sheath synthesis in Sphaerotilus natans. J Bacteriol 88:1145–1150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakiyama T, Ueno H, Homma H, Numata O, Kuwabara T (2006) Purification and characterization of a hemolysin-like protein, Sll1951, a nontoxic member of the RTX protein family from the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 188:3535–3542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakiyama T, Araie H, Suzuki I, Shiraiwa Y (2011) Functions of a hemolysin-like protein in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 193:565–571

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. FEMS Microbiol Rev 38:823–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda M, Nomoto S, Koizumi J (2002) Structural analysis of the extracellular polysaccharide produced by Sphaerotilus natans. Biosci Biotechnol Biochem 66:1546–1551

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Kondo K, Yamada M, Sumikawa M, Koizumi J, Mashima T, Katahira M (2012a) Presence of alternating glucosaminoglucan in the sheath of Thiothrix nivea. Int J Biol Macromol 50:236–244

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Kawasaki Y, Umezu T, Shimura S, Hasegawa M, Koizumi J (2012b) Patterns of sheath elongation, cell proliferation, and manganese(II) oxidation in Leptothrix cholodnii. Arch Microbiol 194:667–673

    Article  PubMed  CAS  Google Scholar 

  • Trautner C, Vermaas WF (2013) The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 195:5370–5380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Veen WL, van der Kooij D, Geuze ECWA, van der Vlies AW (1973) Investigations on the sheathed bacterium Haliscomenobacter hydrossis gen. n., sp. n. isolated from activated sludge. Antonie Van Leeuwenhoek 39:207–216

    Article  PubMed  Google Scholar 

  • van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (C) 16K07714 of the Japan Society for the Promotion of Science. This work was also supported by the Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University (ZE30A-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Takeda.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, Y., Kurosaki, K., Kan, D. et al. Identification and characterization of the S-layer formed on the sheath of Thiothrix nivea. Arch Microbiol 200, 1257–1265 (2018). https://doi.org/10.1007/s00203-018-1543-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1543-x

Keywords

Navigation