Archives of Microbiology

, Volume 200, Issue 8, pp 1267–1278 | Cite as

Functional characterization of ligninolytic Klebsiella spp. strains associated with soil and freshwater

  • Amanda O. dos S. Melo-Nascimento
  • Claudia Treumann
  • Camila Neves
  • Edmilson Andrade
  • Ana Camila Andrade
  • Robert Edwards
  • Elizabeth Dinsdale
  • Thiago BruceEmail author
Short Communication


Overcoming recalcitrance of lignin has motivated bioprospecting of high-yielding enzymes from environmental ligninolytic microorganisms associated with lignocellulose degrading-systems. Here, we performed isolation of 21 ligninolytic strains belonging to the genus Klebsiella spp., driven by the presence of lignin in the media. The fastest-growing strains (FP10-5.23, FP10-5.22 and P3TM1) reached the stationary phase in approximately 24 h, in the media containing lignin as the main carbon source. The strains showed biochemical evidence of ligninolytic potential in liquid- and solid media-converting dyes, which the molecular structures are similar to lignin fragments. In liquid medium, higher levels of dye decolorization was observed for P3TM.1 in the presence of methylene blue, reaching 98% decolorization in 48 h. The highest index values (1.25) were found for isolates P3TM.1 and FP10-5.23, in the presence of toluidine blue. The genomic analysis revealed the presence of more than 20 genes associated with known prokaryotic lignin-degrading systems. Identification of peroxidases (lignin peroxidase—LiP, dye-decolorizing peroxidase—DyP, manganese peroxidase—MnP) and auxiliary activities (AA2, AA3, AA6 and AA10 families) among the genetic repertoire suggest the ability to produce extracellular enzymes able to attack phenolic and non-phenolic lignin structures. Our results suggest that the Klebsiella spp. associated with fresh water and soil may play important role in the cycling of recalcitrant molecules in the Caatinga (desert-like Brazilian biome), and represent a potential source of lignin-degrading enzymes with biotechnological applications.


Lignocellulosic biomass Lignin Klebsiella Biodegradation Bioprospecting Lignin-degrading enzymes 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (475088/2012-3-APQ). Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (No. 23038.009420/2012-71), Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) (JCB0064/2013) and National Science Foundation (13330800).

Compliance with ethical standards

Conflict of interest

No conflict of interest declared.

Supplementary material

203_2018_1532_MOESM1_ESM.png (29 kb)
Supplementary Table 1: Similarity between 16S rRNA gene sequences of Klebsiella isolates relative to the nearest phylogenetic neighbors. Strains isolated from soil samples have names beginning with the letter “P”, and strains isolated from freshwater samples have names beginning with the letter “F” (PNG 28 KB)
203_2018_1532_MOESM2_ESM.png (42 kb)
Supplementary Figure S1: Growth curve of isolates FP10-5.22 (Klebsiella variicola), FP10-5.23 (K. oxytoca), and P3TM.1 (K. variicola) in medium containing lignin as the sole carbon source (PNG 42 KB)
203_2018_1532_MOESM3_ESM.png (581 kb)
Supplementary Table 2: Functions associated with lignin degradation found in the Klebsiella spp. genomes, based on RAST annotation (PNG 580 KB)
203_2018_1532_MOESM4_ESM.jpg (3.5 mb)
Supplementary Figure S2: Catalase test for FP10-5.22 (Klebsiella variicola), FP10-5.23 (K. oxytoca), and P3TM.1 (K. variicola). B represents the blank, without presence of microbial culture (JPG 3567 KB)


  1. Abdel-Hamid AM, Solbiati JO, Cann IKO (2013). Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol (Elsevier):1–28Google Scholar
  2. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 14(23):5096–5107 50(CrossRefGoogle Scholar
  3. An S-Y, Min S-K, Cha I-H, Choi Y-L, Cho Y-S, Kim C-H, Lee Y-C (2002) Decolorization of triphenylmethane and azo dyes by Citrobactersp. Biotechnol Lett 24:1037–1040CrossRefGoogle Scholar
  4. Andrade AC, Fróes A, Lopes FÁC, Thompson FL, Krüger RH, Dinsdale E, Bruce T (2017) The diversity of microbial carbohydrate-active enZYmes (CAZYmes) associated with freshwater and soil samples from Caatinga biome. Microb Ecol 74:89–105CrossRefPubMedGoogle Scholar
  5. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783CrossRefPubMedGoogle Scholar
  6. Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers Biorefin 3:255–269CrossRefGoogle Scholar
  7. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefPubMedGoogle Scholar
  8. Bandounas L, Wierckx NJ, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk:a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133(45):18006–18009CrossRefPubMedGoogle Scholar
  12. Bruce T, Martinez IB, Maia Neto O, Vicente ACP, Kruger RH, Thompson FL (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 60:840–849CrossRefPubMedGoogle Scholar
  13. Bruce T, de Castro A, Kruger R, Thompson CC, Thompson FL (2012) Microbial diversity of Brazilian biomes. In: Nelson KE, Jones-Nelson B (eds) Genomics applications for the developing world. Springer, New York, pp 217–247CrossRefGoogle Scholar
  14. Chen K-C, Wu J-Y, Liou D-J, Hwang S-CJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68CrossRefPubMedGoogle Scholar
  15. da Silva Coelho-Moreira J, Maciel GM, Castoldi R et al. (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Price A (ed) Herbicides Advances in Research, CroatiaCrossRefGoogle Scholar
  16. Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M (2007) Biodegradation of dye solution containing Malachite Green: optimization of effective parameters using Taguchi method. J Hazard Mater 143:214–219CrossRefPubMedGoogle Scholar
  17. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. CrossRefPubMedGoogle Scholar
  18. DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, Sublette K, Silver WL, Hazen TC (2011) Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS One 6:e19306CrossRefPubMedPubMedCentralGoogle Scholar
  19. DeAngelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 4:280. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edwards JS, Palsson BO (2000) The Escherichia coliMG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci 97:5528–5533CrossRefPubMedGoogle Scholar
  21. Eslami H, Seidighi S, Salehi F, Kosravi R, Falahzadeh R, Peirovi R, Sadedhi S (2017) Biodegradation of methylene blue from aqueous solution by bacteria isolated from contaminated soil. J Adv Environ Health Res 5:10–15Google Scholar
  22. Gomare SS, Parshetti GK, Govindwar SP (2009) Biodegradation of malachite green by Brevibacillus laterosporusMTCC 2298. Water Environ Res Res Publ Water Environ Fed 81:2329–2336Google Scholar
  23. Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522CrossRefPubMedGoogle Scholar
  24. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113CrossRefPubMedGoogle Scholar
  25. Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341CrossRefGoogle Scholar
  26. Huang X-F, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626CrossRefPubMedGoogle Scholar
  27. Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ji X-J, Xia Z-F, Fu N-H, Nie Z-K, Shen M-Q, Tian Q-Q, Huang H (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels 6:7CrossRefPubMedPubMedCentralGoogle Scholar
  29. Katzen R, Fowler DE (1994) Ethanol from lignocellulosic wastes with utilization of recombinant bacteria. Appl Biochem Biotechnol 45–46:697–707CrossRefPubMedGoogle Scholar
  30. Kılıç NK, Nielsen JL, Yüce M, Dönmez G (2007) Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere 67:826–831CrossRefPubMedGoogle Scholar
  31. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRefPubMedGoogle Scholar
  32. Lealem F, Gashe B (1994) Amylase production by a gram-positive bacterium isolated from fermenting tef (Eragrostis tef). J Appl Bacteriol 77:348–352CrossRefGoogle Scholar
  33. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lombard V et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):490–495CrossRefGoogle Scholar
  35. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR 66:506–577 (table of contents) CrossRefPubMedGoogle Scholar
  36. Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefPubMedGoogle Scholar
  37. Masai E, Katayama Y, Fukuda M (2017) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotech Bioch 71:1–15CrossRefGoogle Scholar
  38. Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Lai Yee P, Abd-Aziz S (2016) Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Appl Microbiol Biotechnol 100(12):5231–5246CrossRefPubMedGoogle Scholar
  39. Noraini CHC, Morad N, Norli I, Teng TT, Ogugbue CJ (2012) Methylene blue degradation by Sphingomonas paucimobilisunder aerobic conditions. Water Air Soil Pollut 223:5131–5142CrossRefGoogle Scholar
  40. Overbeek R et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213CrossRefPubMedGoogle Scholar
  42. Prabhakaran M, Couger MB, Jackson CA, Weirick T, Fathepure BZ (2015) Genome sequences of the lignin-degrading Pseudomonas sp. strain YS-1p and Rhizobiumsp. strain YS-1r isolated from decaying wood. Genome Announc 3(2):e00019-15CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ramezani S, Pourbabaee A, Daneshm J (2012) Biodegradation of Malachite Green by Klebsiella Terrigenaptcc 1650: the critical parameters were optimized using Taguchi optimization method. J Bioremediat Biodegrad:1–6Google Scholar
  44. Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G (2017) Conversion of lignin model compounds by Pseudomonas putidaKT2440 and isolates from compost. Appl Microbiol Biotechnol 101:5059–5070CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roberts JN, Singh R, Grigg JC, Murphy ME, Bugg TD, Eltis LD (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostiiRHA1. Biochemistry 50(23):5108–5119CrossRefPubMedGoogle Scholar
  46. Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefPubMedGoogle Scholar
  48. Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403CrossRefPubMedGoogle Scholar
  49. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol Evol 24:1596–1599CrossRefGoogle Scholar
  50. Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98(23):9527–9544CrossRefPubMedGoogle Scholar
  51. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang J, Gao F, Liu Z, Qiao M, Niu X, Zhang K-Q, Huang X (2012) Pathway and molecular mechanisms for malachite Green biodegradation in Exiguobacterium sp. MG2. PLoS One 7:e51808CrossRefPubMedPubMedCentralGoogle Scholar
  53. Woo HL, Hazen TC, Simmons BA, DeAngelis KM (2014a) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37:60–67CrossRefPubMedGoogle Scholar
  54. Woo HL, Ballor NR, Hazen TC et al (2014b) Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Stand Genomic Sci 9:19CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu J, Jung B-G, Kim K-S, Lee Y-C, Sung N-C (2009) Isolation and characterization of Pseudomonas otitidisWL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci China 21:960–964CrossRefPubMedGoogle Scholar
  56. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amanda O. dos S. Melo-Nascimento
    • 1
  • Claudia Treumann
    • 1
  • Camila Neves
    • 1
  • Edmilson Andrade
    • 1
  • Ana Camila Andrade
    • 2
  • Robert Edwards
    • 3
  • Elizabeth Dinsdale
    • 4
  • Thiago Bruce
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of Bioenergy, Faculdade de Tecnologia e CiênciasLaboratory of Environmental BiotechnologySalvadorBrazil
  2. 2.Department of MicrobiologyUniversidade Federal da BahiaSalvadorBrazil
  3. 3.Computer Sciences, Laboratory of BioinformaticsSan Diego State UniversitySan DiegoUSA
  4. 4.Laboratory of Microbial EcologySan Diego State UniversitySan DiegoUSA

Personalised recommendations