Advertisement

Influences of light on growth, reproduction and hypocrellin production by Shiraia sp. SUPER-H168

Original Paper
  • 7 Downloads

Abstract

Light is a very important signal for fungi since it influences many different physiological responses. The effects of dark or light at different wavelengths on growth, reproduction and hypocrellins of Shiraia sp. SUPER-H168 were studied: dark, white, red, yellow, green, blue and purple. All incubations under different light conditions had significant stimulating effects on aerial hyphae and suppressing effects on hypocrellin biosynthesis compared with dark incubation. Under blue and purple light especially blue light, the colonies with profuse growth of aerial mycelium were formed. Hypocrellin production reached 13.73 mg per dish under dark condition, and decreased to 4.01 mg and 2.83 mg per dish under white and blue light, respectively. Light condition not only influenced hypocrellin production but also influenced the composition of hypocrellins. Four types of hyphae, namely surface, aerial, biofilm and penetrative hyphae, were observed by light microscopy and SEM. This study found that biofilm hyphae was so closely connected with production of secondary metabolites, and hypocrellins were only produced by biofilm hyphae. Light promoted sexual development and inhibited asexual reproduction, especially blue light strongly inhibited asexual development.

Keywords

Hypocrellin Hyphae Light Solid-state fermentation Shiraia sp. SUPER-H168 

Notes

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant No. 21275066), fundamental research of doctor of philosophy at 2014 (Grant No. 2050205), Project of graduate student scientific research and innovation of Jiangsu province at 2015 (Grant No. 205020502), Six talent peak program at 2016 (Grant No. SWYY-126).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Babitha S, Carvahlo JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675.  https://doi.org/10.1007/s11274-008-9794-3 CrossRefGoogle Scholar
  2. Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138.  https://doi.org/10.1016/i.fgb.2007.06.001 CrossRefPubMedGoogle Scholar
  3. Cai YJ, Liang XH, Liao XR, Ding YR, Sun J, Li XH (2010) High-yield hypocrellin a production in solid-state fermentation by Shiraia sp. SUPER-H168. Appl Biochem Biotechnol 160:2275–2286.  https://doi.org/10.1007/s12010-009-8728-3 CrossRefPubMedGoogle Scholar
  4. Cai YJ, Liao XR, Liang XH, Ding YR, Sun J, Zhang DB (2011) Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. New Biotechnol 28:588–592.  https://doi.org/10.1016/j.nbt.2011.02.001 CrossRefGoogle Scholar
  5. Chen D, Xue C, Chen M, Wu S, Li Z, Wang C (2016) Effects of blue light on pigment biosynthesis of Monascus. J Microbiol 54:305–310.  https://doi.org/10.1007/s12275-016-6011-1 CrossRefPubMedGoogle Scholar
  6. Cheong KK et al (2016) Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol 120:745–751.  https://doi.org/10.1016/j.funbio.2016.02.005 CrossRefPubMedGoogle Scholar
  7. Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photoch Photobio Sci 6:725–736.  https://doi.org/10.1039/b702155k CrossRefGoogle Scholar
  8. Daub ME, Briggs SP (1983) Changes in tobacco cell membrane composition and structure caused by cercosporin. Plant Physiol 71:763–766CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daub ME, Ehrenshaft M (2000) The photoactivated cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Ann Rev Phytopatholgy 38:461–490CrossRefGoogle Scholar
  10. Deng H, Liu X, Xie J, Yin R, Huang NY, Gu Y, Zhao JQ (2012) Quantitative and site-directed chemical modification of hypocrellins toward direct drug delivery and effectivephotodynamic activity. J Med Chem 55:1910–1919.  https://doi.org/10.1021/jm2017368 CrossRefPubMedGoogle Scholar
  11. Dobrowolski DC, Foote CS (1983) Cercosporin, a singlet oxygen generator. Angew Chem Int Ed Engl 22:720–721.  https://doi.org/10.1002/anie.198307201 CrossRefGoogle Scholar
  12. Fanelli F, Schmidt-Heydt M, Haidukowski M, Geisen R, Logrieco A, Mule G (2012) Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum. Int J Food Microbiol 153:148–153.  https://doi.org/10.1016/j.ijfoodmicro.2011.10.031 CrossRefPubMedGoogle Scholar
  13. Fanelli F, Geisen R, Schmidt-Heydt M, Logrieco AF, Mule G (2016) Light regulation of mycotoxin biosynthesis: new perspectives for food safety. World Mycotoxin J 9:129–145.  https://doi.org/10.3920/wmj2014.1860 CrossRefGoogle Scholar
  14. Fang LZ et al (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot 59:351–354CrossRefPubMedGoogle Scholar
  15. Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. Mbio.  https://doi.org/10.1128/mBio.00142-13 PubMedPubMedCentralGoogle Scholar
  16. Gao R, Deng H, Guan Z, Liao X, Cai Y (2017) Purification, characterization and gene analysis of a new alpha-glucosidase from Shiraia sp. SUPER-H168. Ann Microbiol 67:65–77.  https://doi.org/10.1007/s13213-016-1238-y CrossRefGoogle Scholar
  17. Herrera-Estrella A, Horwitz BA (2007) Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64:5–15.  https://doi.org/10.1111/j.1365-2958.2007.05632.x CrossRefPubMedGoogle Scholar
  18. Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GHN (1994) Hypocrellin, from Hypocrella bambuase, Is phototoxic to human-immunodeficiency-virus. Photochem Photobiol 60:253–255 doi:DOI.  https://doi.org/10.1111/j.1751-1097.1994.tb05100.x CrossRefPubMedGoogle Scholar
  19. Ikasari L, Mitchell DA (2000) Two-phase model of the kinetics of growth of Rhizopus oligosporus in membrane culture. Biotechnol Bioeng 68:619–627 doi:10.1002/(sici)1097-0290(20000620)68:6<619::aid-bit4>3.0.co;2-eCrossRefPubMedGoogle Scholar
  20. Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80.  https://doi.org/10.1016/s1087-1845(02)00029-4 CrossRefPubMedGoogle Scholar
  21. Kishi T, Tahara S, Taniguchi N, Tsuda M, Tanaka C, Takahashi S (1991) Nee perylenequinones from Shiraia-bambusicola. Planta Med 57:376–379.  https://doi.org/10.1055/s-2006-960121 CrossRefPubMedGoogle Scholar
  22. Liang XH, Cai YJ, Liao XR, Wu K, Wang L, Zhang DB, Meng Q (2009) Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol Res 164:9–17.  https://doi.org/10.1016/j.micres.2008.08.004 CrossRefPubMedGoogle Scholar
  23. Ma GY et al (2004) Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Chemother 48:4450–4452.  https://doi.org/10.1128/aac.48.11.4450-4452.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  24. ME D (1982) Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin. Plant Physiol Bioch 69(6):1361–1364CrossRefGoogle Scholar
  25. Rahardjo YS, Weber FJ, le Comte EP, Tramper J, Rinzema A (2002) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 78:539–544CrossRefPubMedGoogle Scholar
  26. Shen XY, Zheng DQ, Gao J, Hou CL (2012) Isolation and evaluation of endophytic fungi with antimicrobial ability from Phyllostachys edulis. Bangladesh J Pharmacol 7:249–257.  https://doi.org/10.3329/bjp.v7i4.12068 CrossRefGoogle Scholar
  27. Su YJ, Rao SQ, Cai YJ, Yang YJ (2010) Preparation and characterization of the inclusion complex of hypocrellin A with hydroxypropyl-beta-cyclodextrin. Eur Food Res Technol 231:781–788 doi.  https://doi.org/10.1007/s00217-010-1322-7 CrossRefGoogle Scholar
  28. Su YJ, Si SH, Qiao LW, Cai YJ, Xu ZM, Yang YJ (2011) The effect of a hypocrellin A enriched diet on egg yolk quality and hypocrellin A distributions in the meat of laying hens. Eur Food Res Technol 232:935–940 doi.  https://doi.org/10.1007/s00217-011-1461-5 CrossRefGoogle Scholar
  29. Sugai-Guerios MH, Balmant W, Krieger N, Furigo Junior A, Mitchell DA (2016) Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: a model-based study on how these hyphae grow. Biochem Eng J 114:176–185.  https://doi.org/10.1016/j.bej.2016.07.005 CrossRefGoogle Scholar
  30. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161.  https://doi.org/10.1016/j.bej.2013.10.013 CrossRefGoogle Scholar
  31. Trinci AP (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol 81:225–236CrossRefPubMedGoogle Scholar
  32. Varzakas T (1998) Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741–747.  https://doi.org/10.1016/s0032-9592(98)00044-2 CrossRefGoogle Scholar
  33. Wang Z, Li N, Li J, Dunlap JC, Trail F, Townsend JP (2016) The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. Mbio  https://doi.org/10.1128/mBio.02148-15 Google Scholar
  34. Xie WL, Wei SH, Liu JH, Ge XF, Zhou L, Zhou JH, Shen J (2014) Combination anticancer therapy activity studies for the complex of hypocrellin A and gallium ion. Dyes Pigments 101:43–50 doi:DOI.  https://doi.org/10.1016/j.dyepig.2013.09.038 CrossRefGoogle Scholar
  35. Yang T, Guo MM, Yang HJ, Guo SP, Dong CH (2016) The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 100:743–755.  https://doi.org/10.1007/s00253-015-7047-6 CrossRefPubMedGoogle Scholar
  36. Zhang X, He H, Yin Y, Zhou W, Cai M, Zhou X, Zhang Y (2016) A light-dark shift strategy derived from light-responded metabolic behaviors for polyketides production in marine fungus Halorosellinia sp. J Biotechnol 221:34–42.  https://doi.org/10.1016/j.jbiotec.2016.01.021 CrossRefPubMedGoogle Scholar
  37. Zhao H et al (2014) In vitro and in vivo antitumor activity of a novel hypocrellin B derivative for photodynamic therapy. Photodiagn Photodyn 11:204–212.  https://doi.org/10.1016/j.pdpdt.2014.01.003 CrossRefGoogle Scholar
  38. Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL (2018) Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature.  https://doi.org/10.1038/nature26141 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.College of Life Sciences, Northwest UniversityXi’anChina

Personalised recommendations