Skip to main content
Log in

The transmembrane domain of the Staphylococcus aureus ESAT-6 component EssB mediates interaction with the integral membrane protein EsaA, facilitating partially regulated secretion in a heterologous host

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The ESAT-6-like secretion system (ESS) of Staphylococcus aureus plays a significant role in persistent infections. EssB is a highly conserved bitopic ESS protein comprising a cytosolic N-terminus, single transmembrane helix and a C-terminus located on the trans-side of the membrane. Six systematic truncations covering various domains of EssB were constructed, followed by bacterial two-hybrid screening of their interaction with EsaA, another conserved integral membrane component of the ESS pathway. Results show that the transmembrane domain of EssB is critical for heterodimerization with EsaA. In vivo crosslinking followed by Western blot analysis revealed high molecular weight species when wild-type EssB and EsaA were crosslinked, but this band was not detected in the absence of the transmembrane domain of EssB. Heterologous overproduction of EssB, EsaA and five other components of the ESS pathway in Escherichia coli BL21(DE3), followed by fractionation experiments led to a remarkable increase in the periplasmic protein content, suggesting the assembly of partially regulated secretion mechanism. These data identify the transmembrane domain of EssB as indispensable for interaction with EsaA, thereby facilitating protein secretion across bacterial membranes in a fashion that requires other components of the ESS pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah AM, Gey NC, van Pittius et al (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5(11):883–891

    Article  PubMed  CAS  Google Scholar 

  • Aly KA, Anderson M et al (2017) Isolation of a membrane protein complex for type VII secretion in Staphylococcus aureus. J Bacteriol 199(23):e00482-17. https://doi.org/10.1128/JB.00482-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson M, Chen YH et al (2011) EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol 193(7):1583–1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson M, Aly KA et al (2013) Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol Microbiol 90(4):734–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson M, Ohr RJ et al (2017) EssE promotes Staphylococcus aureus ESS-dependent protein secretion to modify host immune responses during infection. J Bacteriol 199(1):e00527-16

    Article  PubMed  CAS  Google Scholar 

  • Baptista C, Santos MA et al (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190(14):4989–4996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burts ML, Williams WA et al (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA 102(4):1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Burts ML, DeDent AC et al (2008) EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 69(3):736–746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Z, Casabona MG et al (2016) The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2:16183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Champion PA, Champion MM et al (2009) ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73(5):950–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YH, Anderson M et al (2012) Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus. BMC Microbiol 12:219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad WH, Osman MM et al (2017) Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc Natl Acad Sci USA 114(6):1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Cukier RI (2014) Simulations of potentials of mean force for separating a leucine zipper dimer and the basic region of a basic region leucine zipper dimer. J Phys Chem B 118(35):10341–10354

    Article  PubMed  CAS  Google Scholar 

  • David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falugi F, Kim HK et al (2013) Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio 4(5):e00575-00513

    Article  CAS  Google Scholar 

  • Fink A, Sal-Man N et al (2012) Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Biochim Biophys Acta 1818(4):974–983

    Article  PubMed  CAS  Google Scholar 

  • Garufi G, Butler E et al (2008) ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 190(21):7004–7011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garza I, Christie PJ (2013) A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. J Bacteriol 195(13):3022–3034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerber D, Shai Y (2001) In vivo detection of hetero-association of glycophorin-A and its mutants within the membrane. J Biol Chem 276(33):31229–31232

    Article  PubMed  CAS  Google Scholar 

  • Gerber D, Sal-Man N et al (2004) Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 279(20):21177–21182

    Article  PubMed  CAS  Google Scholar 

  • Groschel MI, Sayes F et al (2016) ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14(11):677–691

    Article  PubMed  CAS  Google Scholar 

  • Jongerius I, von Kockritz-Blickwede M et al (2012) Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 4(3):301–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karimova G, Pidoux J et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95(10):5752–5756

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF et al (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Maxon ME, Wigboldus J et al (1990) Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA 87(18):7076–7079

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Yuan R (1968) DNA restriction enzyme from E. coli. Nature 217(5134):1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240(9):3685–3692

    PubMed  CAS  Google Scholar 

  • Poulsen C, Panjikar S et al (2014) WXG100 protein superfamily consists of three subfamilies and exhibits an alpha-helical C-terminal conserved residue pattern. PLoS One 9(2):e89313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin L, Reger AS et al (2015) Structures of cGMP-dependent protein kinase (PKG) Ialpha leucine zippers reveal an interchain disulfide bond important for dimer stability. Biochemistry 54(29):4419–4422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schagger H, Aquila H et al (1988) Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal Biochem 173(1):201–205

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy R, Fyfe PK et al (2008) Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J Mol Biol 383(3):603–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sysoeva TA, Zepeda-Rivera MA et al (2014) Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc Natl Acad Sci USA 111(21):7653–7658

    Article  PubMed  CAS  Google Scholar 

  • Thammavongsa V, Kim HK et al (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unnikrishnan M, Constantinidou C et al (2017) The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 25(3):192–204

    Article  PubMed  CAS  Google Scholar 

  • van Belkum A, Melles DC et al (2009) Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect Genet Evol 9(1):32–47

    Article  PubMed  CAS  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 2: management strategies and new agents. P T 40(5):344–352

    PubMed  PubMed Central  Google Scholar 

  • Warne B, Harkins CP et al (2016) The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genom 17:222

    Article  CAS  Google Scholar 

  • Zhang Q, Wang D et al (2016) EsxA membrane-permeabilizing activity plays a key role in mycobacterial cytosolic translocation and virulence: effects of single-residue mutations at glutamine 5. Sci Rep 6:32618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoltner M, Fyfe PK et al (2013a) Characterization of Staphylococcus aureus EssB, an integral membrane component of the Type VII secretion system: atomic resolution crystal structure of the cytoplasmic segment. Biochem J 449(2):469–477

    Article  PubMed  CAS  Google Scholar 

  • Zoltner M, Norman DG et al (2013b) The architecture of EssB, an integral membrane component of the type VII secretion system. Structure 21(4):595–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoltner M, Ng WM et al (2016) EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem J 473(13):1941–1952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Olaf Schneewind and Chloe Schneewind for careful reading of the manuscript, and members of the Aly laboratory for the useful insights. Research in the Aly laboratory is supported by capacity and core facility equipment from Sinai University, El-Arish, North Sinai, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. Aly.

Additional information

Communicated by Djamel DRIDER.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.M., Aboshanab, K.M., Ragab, Y.M. et al. The transmembrane domain of the Staphylococcus aureus ESAT-6 component EssB mediates interaction with the integral membrane protein EsaA, facilitating partially regulated secretion in a heterologous host. Arch Microbiol 200, 1075–1086 (2018). https://doi.org/10.1007/s00203-018-1519-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1519-x

Keywords

Navigation