Smoking and the intestinal microbiome

Abstract

Studies are emerging alluding to the role of intestinal microbiome in the pathogenesis of diseases. Intestinal microbiome is susceptible to the influence of environmental factors such as smoking, and recent studies have indicated microbiome alterations in smokers. The aim of the study was to review the literature regarding the impact of smoking on the intestinal microbiome. A literature review of publications in PUBMED was performed using combinations of the terms “Intestinal/Gut/Gastrointestinal/Colonic” with “Microbiome/Microbiota/Microbial/Flora” and “Smoking/Smoker/Tobacco”. We selected studies that were published between the years 2000 and 2016 as our inclusion criteria. Observational and interventional studies suggest that the composition of intestinal microbiome is altered due to smoking. In these studies, Proteobacteria and Bacteroidetes phyla were increased, as well as the genera of Clostridium, Bacteroides and Prevotella. On the other hand, Actinobacteria and Firmicutes phyla as well as the genera Bifidobacteria and Lactococcus were decreased. Smoking also decreased the diversity of the intestinal microbiome. Mechanisms that have been suggested to explain the effect of smoking on intestinal microbiome include: oxidative stress enhancement, alterations of intestinal tight junctions and intestinal mucin composition, and changes in acid–base balance. Interestingly, some smoking-induced alterations of intestinal microbiome resemble those demonstrated in conditions such as inflammatory bowel disease and obesity. Further studies should be performed to investigate this connection. Smoking has an effect on intestinal microbiome and is suggested to alter its composition. This interaction may contribute to the development of intestinal and systemic diseases, particularly inflammatory bowel diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Allais L et al (2016) Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 18:1352–1363

    Article  PubMed  CAS  Google Scholar 

  2. Andoh A et al (2009) Faecal microbiota profile of Crohn’s disease determined by terminal restriction fragment length polymorphism analysis. Aliment Pharmacol Ther 29:75–82

    Article  PubMed  CAS  Google Scholar 

  3. Beaugerie L et al (2001) Impact of cessation of smoking on the course of ulcerative colitis. Am J Gastroenterol 96:2113–2116

    Article  PubMed  CAS  Google Scholar 

  4. Benjamin JL et al (2012) Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis 18:1092–1100

    Article  PubMed  Google Scholar 

  5. Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW (2006) The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol 55:1141–1149

    Article  PubMed  Google Scholar 

  6. Biedermann L et al (2013) Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8:e59260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Biedermann L et al (2014) Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis 20:1496–1501

    Article  PubMed  Google Scholar 

  8. Bringiotti R et al (2014) Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J Gastrointest Pathophysiol 5:550–559

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brook I (2011) The impact of smoking on oral and nasopharyngeal bacterial flora. J Dent Res 90:704–710

    Article  PubMed  CAS  Google Scholar 

  10. Charlson ES et al (2010) Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 5:e15216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cosnes J, Carbonnel F, Beaugerie L, Le Quintrec Y, Gendre JP (1996) Effects of cigarette smoking on the long-term course of Crohn’s disease. Gastroenterology 110:424–431

    Article  PubMed  CAS  Google Scholar 

  12. Derkinderen P, Shannon KM, Brundin P (2014) Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 29:976–979

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di YP, Zhao J, Harper R (2012) Cigarette smoke induces MUC5AC protein expression through the activation of Sp1. J Biol Chem 287:27948–27958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dupont HL (2016) Review article: The antimicrobial effects of rifaximin on the gut microbiota. Aliment Pharmacol Ther 43:3–10

    Article  PubMed  CAS  Google Scholar 

  15. Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17:557–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Foxman B, Rosenthal M (2013) Implications of the human microbiome project for epidemiology. Am J Epidemiol 177:197–201

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gevers D et al (2012) The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten, SJ (2006) O. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44:4136–4141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002

    Article  PubMed  Google Scholar 

  20. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35:229–244

    Article  PubMed  CAS  Google Scholar 

  21. Haberman Y et al (2014) Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 124:3617–3633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hébuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6:49–54

    Article  PubMed  Google Scholar 

  23. Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kim KC (2012) Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 25:415–419

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi T, Fujiwara K (2013a) Identification of Heavy Smokers through Their Intestinal Microbiota by Data Mining Analysis. Biosci Microbiota Food Heal 32:77–80

    Article  Google Scholar 

  26. Kobayashi T, Fujiwara K (2013b) Comparison of the accuracy and mechanism of data mining identification of the intestinal microbiota with 7 restriction enzymes. Biosci Microbiota Food Heal 32:139–148

    Article  Google Scholar 

  27. Kriegel MA et al (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108:11548–11553

    Article  Google Scholar 

  28. Kumar PS, Matthews CR, Joshi V, de Jager M, Aspiras M (2011) Tobacco smoking affects bacterial acquisition and colonization in oral biofilms. Infect Immun 79:4730–4738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Landy J et al (2011) Review article: faecal transplantation therapy for gastrointestinal disease. Aliment Pharmacol Ther 34:409–415

    Article  PubMed  CAS  Google Scholar 

  30. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(Suppl):4615–4622

    Google Scholar 

  31. Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  Google Scholar 

  32. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  33. Lim MY et al (2016) Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci Rep 6:23745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S (2006) Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc 81:1462–1471

    Article  Google Scholar 

  35. Marchesan JT et al (2013) Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res Ther 15:R186

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maron R et al (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106:1708–1715

    Article  PubMed  CAS  Google Scholar 

  37. Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Morris A et al (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ott SJ et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Raz I et al (2001) Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358:1749–1753

    Article  PubMed  CAS  Google Scholar 

  42. Rha Y-H et al (2002) Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J Immunol 169:5300–5307

    Article  PubMed  Google Scholar 

  43. Rogers MAM et al (2012) Higher rates of Clostridium difficile infection among smokers. PLoS One 7:e42091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rosenstein ED, Weissmann G, Greenwald RA (2009) Porphyromonas gingivalis, periodontitis and rheumatoid arthritis. Med Hypotheses 73:457–458

    Article  PubMed  Google Scholar 

  45. Saba K, Denda-Nagai K, Irimura T (2009) A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. Am J Pathol 174:144–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sapkota AR, Berger S, Vogel TM (2010) Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect 118:351–356

    Article  PubMed  CAS  Google Scholar 

  47. Schwiertz A et al (2010) Microbiota in pediatric inflammatory bowel disease. J Pediatr 157:240–244 e1

    Article  PubMed  Google Scholar 

  48. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  PubMed  CAS  Google Scholar 

  49. Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science (80-.) 341:569–573

    Article  CAS  Google Scholar 

  50. Swidsinski A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    Article  PubMed  Google Scholar 

  51. Talukder MAH et al (2011) Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 300:H388-96

    Article  PubMed  CAS  Google Scholar 

  52. Taneja V (2014) Arthritis susceptibility and the gut microbiome. FEBS Lett 588:4244–4249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tharappel JC et al (2010) Effects of cigarette smoke on the activation of oxidative stress-related transcription factors in female A/J mouse lung. J Toxicol Environ Health A 73:1288–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tomasello G et al (2014) Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J Gastroenterol 20:18121–18130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tomoda K et al (2011) Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J Toxicol Sci 36:261–266

    Article  PubMed  Google Scholar 

  56. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  57. van Eden W et al (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173

    Article  PubMed  Google Scholar 

  58. Vieira SM, Pagovich OE, Kriegel MA (2014) Diet, microbiota and autoimmune diseases. Lupus 23:518–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Vogtmann E et al (2015) Association between tobacco use and the upper gastrointestinal microbiome among Chinese men. Cancer Causes Control 26:581–588

    Article  PubMed  PubMed Central  Google Scholar 

  60. Walker AW et al (2011) High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang H et al (2012) Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol 18:2180–2187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wegner N et al (2010) Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev 233:34–54

    Article  PubMed  CAS  Google Scholar 

  63. Wu H-J et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wu J et al (2016) Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. https://doi.org/10.1038/ismej.2016.37

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu JE et al (2011) High levels of Crohn’s disease-associated anti-microbial antibodies are present and independent of colitis in chronic granulomatous disease. Clin Immunol 138:14–22

    Article  PubMed  CAS  Google Scholar 

  66. Yu H, Li Q, Kolosov VP, Perelman JM, Zhou X (2012) Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways. J Appl Toxicol 32:282–292

    Article  PubMed  CAS  Google Scholar 

  67. Zhu Q, Gao R, Wu W, Qin H (2013) The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 34:1285–1300

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply thank Omri Koren, PhD, principal investigator in Bar-Ilan Faculty of Medicine, for his assistance and comments that greatly improved our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shoenfeld Yehuda.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savin, Z., Kivity, S., Yonath, H. et al. Smoking and the intestinal microbiome. Arch Microbiol 200, 677–684 (2018). https://doi.org/10.1007/s00203-018-1506-2

Download citation

Keywords

  • Smoking
  • Intestinal microbiome
  • Dysbiosis
  • Autoimmunity
  • Inflammatory bowel disease