Skip to main content

Agromyces mangrovi sp. nov., a novel actinobacterium isolated from the rhizosphere of a mangrove

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


A novel actinobacterium, designated HIr16-25T, was isolated from the rhizosphere soil of a mangrove growing on Iriomote Island in Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HIr16-25T fell within the cluster of the members of the genus Agromyces and the highest sequence similarity value was observed with Agromyces rhizospherae IFO 16236T (98.6%). Strain HIr16-25T possessed l-2,4-diaminobutyric acid as a diagnostic diamino acid of the peptidoglycan, and MK-12 and MK-11 as the predominant menaquinones. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and anteiso-C17:0 and the principal polar lipids were phosphatidylglycerol and one glycolipid. These chemotaxonomic features matched well those described for the members of the genus Agromyces. Meanwhile, the result of DNA–DNA hybridization and the presence of differential phenotypic characteristics between strain HIr16-25T and the type strain of A. rhizospherae indicated that strain HIr16-25T be classified as a novel species of the genus Agromyces. Therefore, we propose strain HIr16-25T to represent a novel species of the genus Agromyces, with the name Agromyces mangrovi sp. nov. The type strain is HIr16-25T (= NBRC 112812T = TBRC 7760T).

This is a preview of subscription content, access via your institution.

Fig. 1


  • Akimov VN, Evtushenko LI (2012) Genus IV. Agromyces. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 862–876

    Google Scholar 

  • Corretto E, Antonielli L, Sessitsch A, Compant S, Gorfer M, Kuffner M, Brader G (2016) Agromyces aureus sp. nov., isolated from the rhizosphere of Salix caprea L. grown in a heavy-metal-contaminated soil. Int J Syst Evol Microbiol 66:3749–3754

    Article  PubMed  CAS  Google Scholar 

  • Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127

    PubMed  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:738–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gledhill WE, Casida LE (1969) Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia. Appl Microbiol 18:340–349

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K, Hayakawa M (2012) Luteimicrobium album sp. nov., a novel actinobacterium isolated from lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 65:427–431

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Shibata C, Tamura T, Nurkanto A, Ratnakomala S, Lisdiyanti P, Suzuki K (2016) Cellulosimicrobium marinum sp. nov., an actinobacterium isolated from sea sediment. Arch Microbiol 198:439–444

    Article  PubMed  CAS  Google Scholar 

  • Jung SY, Lee SY, Oh TK, Yoon JH (2007) Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum. Int J Syst Evol Microbiol 57:588–593

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DEM, Collins D, Goodfellow M (1975) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia related taxa. J Appl Bacteriol 47:87–95

    Article  Google Scholar 

  • Roselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Syst Appl Microbiol 110:455–456

    Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takeuchi M, Hatano K (2001) Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 51:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovol TG, Lysak LV, Kalakoutskii LV (1992) Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov Int J Syst Evol Microbiol 42:635–641

    Google Scholar 

Download references


The authors thank Dr Satoshi Sekimoto and Ms Mayuko Sukisaki (NBRC) for supporting sample collection.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Moriyuki Hamada.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 246 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamada, M., Saitou, S. & Tamura, T. Agromyces mangrovi sp. nov., a novel actinobacterium isolated from the rhizosphere of a mangrove. Arch Microbiol 200, 939–943 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Actinobacteria
  • Mangrove rhizosphere
  • Agromyces
  • Polyphasic taxonomy