Skip to main content
Log in

Aquincola amnicola sp. nov., isolated from a freshwater river

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain TTM-94T, isolated from a water sample taken from the Caohu River in Taiwan, was characterized using a polyphasic taxonomic approach. Cells of strain TTM-94T were Gram-staining-negative, aerobic, poly-β-hydroxybutyrate-accumulating, motile by a single polar flagellum, short rod-shaped and surrounded by a thick capsule and it formed cream colored colonies. Growth occurred at 20–30 °C (optimum, 30 °C), at pH 6.0–8.0 (optimum, pH 6.0), and in the presence of 0–2% NaCl (optimum 0.5%). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TTM-94T belonged to the genus Aquincola in the RubrivivaxRoseatelesLeptothrixIdeonellaAquabacterium branch of the class Betaproteobacteria and its most closely related neighbour was Aquincola tertiaricarbonis L10T with sequence similarity of 97.0%. Strain TTM-94T contained summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), C16:0 and C18:1ω7c as the predominant fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized lipids. The major respiratory quinone was Q-8. Genomic DNA G + C content of strain TTM-94T was 70.7 mol%. Strain TTM-94T exhibited less than 30% DNA–DNA relatedness with A. tertiaricarbonis L10T. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain TTM-94T should be classified as a novel species of the genus Aquincola, for which the name Aquincola amnicola sp. nov. is presented. The type strain is TTM-94T (= BCRC 80890T = LMG 28709T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Lawrence JR, Murray RGE (2007) Sampling and staining for light microscopy. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 19–33

    Google Scholar 

  • Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology. Washington, DC, pp 309–329

    Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Google Scholar 

  • Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell G (eds) A chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–309

    Google Scholar 

  • Embley TM, Wait R (1994) Structural lipids of eubacteria. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 121–161

    Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric DNA–DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, other authors (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lechner U, Brodkorb D, Geyer R, Hause G, Hartig C, Auling G, Fayolle-Guichard F, Piveteau P, Muller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Nokhal TH, Schlegel HG (1983) Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33:26–37

    Article  Google Scholar 

  • Piveteau P, Fayolle F, Vandecasteele JP, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

    Article  PubMed  CAS  Google Scholar 

  • Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc, Newark

    Google Scholar 

  • Schlegel HG, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 71:283–294

    Article  PubMed  CAS  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology. Washington, DC, pp 330–393

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weisburg WG, Burns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen CM, Tseng CS, Cheng CY, Li YK (2002) Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35:213–219

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yi Sheu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Aquincola amnicola strain TTM-94T is LN794224. The Digital Protologue database Taxon Number for d strain TTM-94T is TA00386.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WM., Chen, YL., Li, YS. et al. Aquincola amnicola sp. nov., isolated from a freshwater river. Arch Microbiol 200, 811–817 (2018). https://doi.org/10.1007/s00203-018-1492-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1492-4

Keywords

Navigation