Abstract
Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.


Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Blum G, Perkhofer S, Haas H, Schrettl M, Würzner R, Dierich MP, Lass-Flörl C (2008) Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother 52:1553–1555. https://doi.org/10.1128/AAC.01280-07
Blyth C, Middleton P, Harun A, Sorrell T, Meyer W, Chen S (2010) Clinical associations and prevalence of Scedosporium spp. in Australian cystic fibrosis patients: identification of novel risk factors? Med Mycol 48(Suppl 1):S37–S44. https://doi.org/10.3109/13693786.2010.500627
Bouchara JP, Horré R, de Hoog S (2009) Pseudallescheria and Scedosporium: emerging opportunists. Med Mycol 47:341–342. https://doi.org/10.1080/13693780902756974
Cáp M, Váchová L, Palková Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev 2012:976753. https://doi.org/10.1155/2012/976753
Chow EW, Morrow CA, Djordjevic JT, Wood IA, Fraser JA (2012) Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Mol Biol Evol 29:1987–2000. https://doi.org/10.1093/molbev/mss066
Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N (2010) Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156:1108–1119. https://doi.org/10.1099/mic.0.033993-0
De Brucker K, Bink A, Meert E, Cammue BP, Thevissen K (2013) Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase inhibition. Oxid Med Cell Longev 2013:704654. https://doi.org/10.1155/2013/704654
De Cremer K, De Brucker K, Staes I, Peeters A, Van den Driessche F, Coenye T, Cammue BP, Thevissen K (2016) Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms. Sci Rep 6:27463. https://doi.org/10.1038/srep27463
Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Rev Microbiol 2:820–832. https://doi.org/10.1038/nrmicro1004
Gilgado F, Serena C, Cano J, Gené J, Guarro J (2006) Antifungal susceptibilities of the species of the Pseudallescheria boydii complex. Antimicrob Agents Chemother 50:4211–4213. https://doi.org/10.1128/AAC.00981-06
Goldblatt D (2014) Recent advances in chronic granulomatous disease. J Infect 69:S32–S35. https://doi.org/10.1016/j.jinf.2014.07.013
Griffiths HR, Mistry P, Herbert KE, Lunec J (1998) Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 35:189–237. https://doi.org/10.1080/10408369891234192
Henriet SSV, Verweij PE, Warris A (2012) Aspergillus nidulans and chronic granulomatous disease: a unique host-pathogen interaction. J Infect Dis 206:1128–1137. https://doi.org/10.1093/infdis/jis473
Jabado N, Casanova JL, Haddad E, Dulieu F, Fournet JC, Dupont B, Fischer A, Hennequin C, Blanche S (1998) Invasive pulmonary infection due to Scedosporium apiospermum in two children with chronic granulomatous disease. Clin Infect Dis 27:1437–1441. https://doi.org/10.1086/515015
Jakubowski W, Biliński T, Bartosz G (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Rad Biol Med 28:659–664. https://doi.org/10.1016/S0891-5849(99)00266-X
Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I, Klaassen CH, Meis JF (2012) Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother 56:2635–2642. https://doi.org/10.1128/AAC.05910-11
Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U (2010) YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6(3):e1000804. https://doi.org/10.1371/journal.ppat.1000804
Mello TP de, Aor AC, Oliveira SS de, Branquinha MH, dos Santos ALS (2016) Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles. Mem Inst Oswaldo Cruz 0:0. https://doi.org/10.1590/0074-02760160200
Morschhäuser J (2016) The development of fluconazole resistance in Candida albicans—an example of microevolution of a fungal pathogen. J Microbiol 54:192–201. https://doi.org/10.1007/s12275-016-5628-4
Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. https://doi.org/10.1038/nri3423
Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848. https://doi.org/10.1073/pnas.97.16.8841
Peghin M, Monforte V, Martin-Gomez MT, Ruiz-Camps I, Berastegui C, Saez B, Riera J, Solé J, Gavaldá J, Roman A (2016) Epidemiology of invasive respiratory disease caused by emerging non-Aspergillus molds in lung transplant recipients. Transplant Infect Dis 18:70–78. https://doi.org/10.1111/tid.12492
Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Berguer E, Rollin-Pinheiro R, Vieira de Meirelles J, XIsto MI, Ranque S, Havlicek V, Vandeputte P, Le Govic Y, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhard A, Tintelnot K, Capilla J, Martin Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL (2017) Scedosporium complex and Lomentospora prolificans: an updated overview of underrated opportunist. Med Mycol
Rougeron A, Giraud S, Alastruey-Izquierdo A, Cano J, Rainer J, Mouhajir M, Le Gal S, Nevez G, Meyer W, Bouchara JP (2018) Ecology of Scedosporium species: present knowledge and future research. Mycopathologia 183(1):185–200. https://doi.org/10.1007/s11046-017-0200-2
Sedlacek L, Graf B, Schwarz C, Albert F, Peter S, Würstl B, Wagner S, Klotz M, Becker A, Haase G, Laniado G, Kahl B, Suerbaum S, Seibold M, Tintelnot K (2015) Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium. J Cyst Fibros 14:237–241. https://doi.org/10.1016/j.jcf.2014.12.014
Sitterlé E, Giraud S, Leto J, Bouchara JP, Rougeron A, Morio F, Dauphin B, Angebault C, Quesne G, Beretti JL, Hassouni N, Nassif X, Bougnoux ME (2014) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and accurate identification of Pseudallescheria/Scedosporium species. Clin Microbiol Infect 20:929–935. https://doi.org/10.1111/1469-0691.12574
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara J-P, Fleury MJJ (2017a) Microbial antioxidant defense enzymes. Microb Pathog 110:56–75. https://doi.org/10.1016/j.micpath.2017.06.015
Staerck C, Vandeputte P, Gastebois A, Calenda A, Giraud S, Papon N, Bouchara JP, Fleury MJJ (2017b) Enzymatic mechanisms involved in evasion of fungi to the oxidative stress: Focus on Scedosporium apiospermum. Mycopathologia. https://doi.org/10.1007/s11046-017-0160-6
Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169
Zouhair R, Rougeron A, Razafimandimby B, Kobi A, Bouchara J-P, Giraud S (2013) Distribution of the different species of the Pseudallescheria boydii/Scedosporium apiospermum complex in French patients with cystic fibrosis. Med Mycol 51:603–613. https://doi.org/10.3109/13693786.2013.770606
Acknowledgements
C.S. was recipient, for her PhD thesis, of a grant from the French patient organization against cystic fibrosis, Vaincre La Mucoviscidose, which is gratefully acknowledged [RF20140501104].
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Olaf Kniemeyer.
JPB and MJJF are members of the ECMM/ISHAM (European Confederation of Medical Mycology/International Society for Human and Animal Mycology) working group Fungal respiratory infections in Cystic Fibrosis (Fri-CF).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Staerck, C., Godon, C., Bouchara, JP. et al. Varying susceptibility of clinical and environmental Scedosporium isolates to chemical oxidative stress in conidial germination. Arch Microbiol 200, 517–523 (2018). https://doi.org/10.1007/s00203-018-1491-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00203-018-1491-5