Skip to main content

Advertisement

Log in

Glucerabacter canisensis gen. nov., sp. nov., isolated from dog feces and its effect on the hydrolysis of plant glucosylceramide in the intestine of dogs

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2021

This article has been updated

Abstract

A Gram-positive, obligately anaerobic, oval-rod shaped, non-spore-forming, and non-pigmented bacterium, designated strain NATH-2371T (= JCM31739T = DSM105698T), was isolated from dog feces. Comparative 16S rRNA gene sequence analysis revealed that strain NATH-2371T belongs to Clostridium cluster XIVa, and the closest strains were Coprococcus comes ATCC 27758T (94.8% 16S rRNA gene sequence similarity) and Clostridium nexile DSM 1787T (94.0%). Strain NATH-2371T produced acetate, formate, and ethanol from glucose. Predominant cellular fatty acids are C16:0 and C16:0 DMA. On the basis of the phenotypic and genotypic differences, strain NATH-2371T represents a novel species in a new genus of the family Lachnospiraceae, for which the name Glucerabacter canisensis gen. nov., sp. nov., is proposed. This strain was found to efficiently hydrolyze plant glucosylceramide (GluCer). The abundance of strain NATH-2371T in dog feces was higher in young dogs than in old dogs. Incubation of dog fecal bacteria showed that GluCer-hydrolyzing activity decreased with the age of dogs. The cell number of strain NATH-2371T in dog feces appeared to be correlated with GluCer hydrolysis. Thus, this bacterium is likely to play a major role in GluCer hydrolysis in the dog intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Change history

References

  • Aida K, Kinoshita M, Sugawara T, Ono J, Miyazawa T, Ohnishi M (2004) Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J Oleo Sci 53:503–510

    Article  CAS  Google Scholar 

  • Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydrazine-treated mice. J Oleo Sci 54:45–49

    Article  CAS  Google Scholar 

  • Arai K, Mizoguchi Y, Tokuji Y, Aida K, Yamashita S, Ohnishi M, Kinoshita M (2015) Effects of dietary plant-origin glucosylceramide on bowel inflammation in DSS-treated mice. J Oleo Sci 64:737–742

    Article  CAS  PubMed  Google Scholar 

  • Asanuma N, Iwamoto M, Hino T (1999) Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium, Streptococcus bovis. Microbiology 145:151–157

    Article  CAS  PubMed  Google Scholar 

  • Asanuma N, Iwamoto M, Yoshii T, Hino T (2004) Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium. J Gen Appl Microbiol 50:55–63

    Article  CAS  PubMed  Google Scholar 

  • Asanuma N, Kanada K, Hino T (2008) Molecular properties and transcriptional control of the phosphofructokinase and pyruvate kinase genes in a ruminal bacterium, Streptococcus bovis. Anaerobe 14:237–241

    Article  CAS  PubMed  Google Scholar 

  • Bergey DH, Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585:153–162

    Article  CAS  PubMed  Google Scholar 

  • Dany M, Ogretmen B (2015) Ceramide induced mitophagy and tumor suppression. Biochim Biophys Acta 1853:2834–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Gonzalez F, Bond DR, Jennings E, Russell JB (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol 171:324–330

    Article  CAS  PubMed  Google Scholar 

  • Duan RD, Nilsson A (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48:62–72

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Sugawara T, Sakai S, Aida K, Hirata T (2011) Oral glucosylceramide reduces 2,4-dinitrofluorobenzene induced inflammatory response in mice by reducing TNF-alpha levels and leukocyte infiltration. Lipids 46:505–512

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Sugawara T, Aida K, Hirose M, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier function via up-regulation of ceramide synthases in the epidermis. Exp Dermatol 21:448–452

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Furuya H, Suzuki Y, Asanuma N, Hino T (2005) A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J Gen Appl Microbiol 51:105–113

    Article  CAS  PubMed  Google Scholar 

  • Furuya H, Ide Y, Hamamoto M, Asanuma N, Hino T (2010) Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 192:365–372

    Article  CAS  PubMed  Google Scholar 

  • Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  CAS  PubMed  Google Scholar 

  • Hamajima H, Matsunaga H, Fujikawa A, Sato T, Mitsutake S, Yanagita T, Nagao K, Nakayama J, Kitagaki H (2016) Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SpringerPlus 5:1321–1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signaling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  • Harvald EB, Olsen ASB, Færgeman NJ (2015) Autophagy in the light of sphingolipid metabolism. Apoptosis 20:658–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Kawashima M, Ichikawa Y, Imokawa G (2003) Sphingosylphosphorylcholine is a melanogenic stimulator for human melanocytes. Pigment Cell Res 16:670–678

    Article  CAS  PubMed  Google Scholar 

  • Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Kawada C, Hasegawa T, Watanabe M, Nomura Y (2013) Dietary glucosylceramide enhances tight junction function in skin epidermis via induction of claudin-1. Biosci Biotechnol Biochem 77:867–869

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Hori N, Aida K, Sugawara T, Ohnishi M (2007) Prevention of melanin formation by yeast cerebroside in B16 mouse melanoma cells. J Oleo Sci 56:645–648

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Aida K, Tokuji Y, Sugawara T, Ohnishi M (2009) Effects of dietary plant cerebroside on gene expression in the large intestine of 1,2-dimethylhydrazine (DMH)-treated mice determined by DNA microarray analysis. J Food Lipids 16:200–208

    Article  CAS  Google Scholar 

  • Kurakawa T, Ogata K, Matsuda K, Tsuji H, Kubota H, Takada T, Kado Y, Asahara T, Takahashi T, Nomoto K (2015) Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PLOS One 10:e0126226. https://doi.org/10.1371/journal.pone.0126226

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Falk P, Hoskins LC (1988) Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263:10790–10798

    CAS  PubMed  Google Scholar 

  • Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, Rohlf FJ, Zhu W, Gu C, Robertson CE, Pace NR, Boedeker EC, Harpaz N, Yuan J, Weinstock GM, Sodergren E, Frank DN (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLOS One 7:e26284. https://doi.org/10.1371/journal.pone.0026284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Nilsson A (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187:113–121

    Article  CAS  PubMed  Google Scholar 

  • Ogimoto K, Imai S (1981) Atlas of rumen microbiology. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin AM, Montmayeur A, Shea TP, Walker BJ, Young SK, Russ C, Nusbaum C, MacCallum I, Jaffe DB (2012) Finished bacterial genomes from shotgun sequence data. Genome Res 22:2270–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J Nutr 130:522–527

    Article  CAS  PubMed  Google Scholar 

  • Shirakura Y, Kikuchi K, Matsumura K, Mukai K, Mitsutake S, Igarashi Y (2012) 4,8-sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Lipids Health Dis 11:108–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Sohpal VK, Dey A, Singh A (2010) MEGA biocentric software for sequence and phylogenetic analysis: a review. Int J Bioinform Res Appl 6:230–240

    Article  PubMed  Google Scholar 

  • Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10:1388–1397

    Article  CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Kinoshita M, Ohnishi M, Miyazawa T (2002) Apoptosis induction by wheat-flour sphingoid bases in DLD-1 human colon cancer cells. Biosci Biotechnol Biochem 66:2228–2231

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133:2777–2782

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44:101–107

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Nakano Y, Ueda O, Mori H, Nakashima M, Noda A, Ishizaki C, Mizoguchi M (2008) Oral intake of glucosylceramide improves relatively higher level of transepidermal water loss in mice and healthy human subjects. J Health Sci 54:559–566

    Article  CAS  Google Scholar 

  • Ueda N (2015) Ceramide-induced apotosis in rental tubular cells: a role of mitochondria and sphingosine-1-phosphate. Int J Mol Sci 16:5076–5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Yeom M, Kim SH, Lee B, Han JJ, Chung GH, Choi HD, Lee H, Hahm DH (2012) Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear. J Dermatol Sci 67:101–110

    Article  CAS  PubMed  Google Scholar 

  • Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K, Oda Y, Ohnishi M (2008) Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem 72:222–225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narito Asanuma.

Additional information

Communicated by Erko Stackebrandt.

The Digital Protologue database Taxon Number for strain NATH-2371T is TA00265. The GenBank/EMBL/DDBJ Accession Number for the 16S rRNA gene sequence of Glucerabacter canisensis NATH-2371T (= JCM 31739T = DSM 105698T) is LC191811.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawata, M., Tsukamoto, A., Isozaki, R. et al. Glucerabacter canisensis gen. nov., sp. nov., isolated from dog feces and its effect on the hydrolysis of plant glucosylceramide in the intestine of dogs. Arch Microbiol 200, 505–515 (2018). https://doi.org/10.1007/s00203-017-1463-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1463-1

Keywords