Archives of Microbiology

, Volume 200, Issue 3, pp 383–389 | Cite as

Effect of Lactobacillus rhamnosus on the response of Galleria mellonella against Staphylococcus aureus and Escherichia coli infections

  • Adeline Lacerda Jorjão
  • Felipe Eduardo de Oliveira
  • Mariella Vieira Pereira Leão
  • Antonio Olavo Cardoso Jorge
  • Luciane Dias de Oliveira
Original Paper


This study evaluated the prophylactic effects of the live or heat-killed probiotic strain Lactobacillus rhamnosus ATCC 7469 in Galleria mellonella, inoculated with Staphylococcus aureus or Escherichia coli. L. rhamnosus suspension was prepared and a part of it was autoclaved to obtain heat-killed lactobacilli. The larvae were inoculated of these suspensions and pathogenic. The survival of the larvae was observed during 7 days and after 24 h of inoculation haemocytes counted, melanization and nitric oxide production were analyzed. Larvae survival rate increased in the group inoculated with heat-killed L. rhamnosus, however, with no statistical difference. There was a significant increase in total haemocyte counts in all test groups. Haemolymph melanization and nitric oxide production were higher in the group inoculated with L. rhamnosus and infected with S. aureus. It was concluded that, in this model of infection, heat-killed L. rhamnosus ATCC 7469 promoted greater protection in Galleria mellonella infected with S. aureus or E. coli.


Lactobacillus rhamnosus Galleria mellonella Infection Curve survival Melanization 


Compliance with ethical standards


This study was not funded.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

There is no need for ethical advice approval to use Galleria mellonella as an infection model. However, all institutional guidelines applicable to the care and use of the animals were followed.


  1. Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23(1):37–46. doi: 10.1017/S0954422410000090 CrossRefPubMedGoogle Scholar
  2. Dash G, Raman RP, Pani Prasad K, Makesh M, Pradeep MA, Sen S (2015) Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol 43(1):167 – 74. doi: 10.1016/j.fsi.2014.12.007 CrossRefPubMedGoogle Scholar
  3. Fuchs BB, Li Y, Li D, Johnston T, Hendricks G, Li G, Rajamuthiah R, Mylonakis E (2016) Micafungin elicits an immunomodulatory effect in Galleria mellonella and mice. Mycopathologia 181(1–2):17–25. doi: 10.1007/s11046-015-9940-z CrossRefPubMedGoogle Scholar
  4. Gibreel TM, Upton M (2013 Oct) Synthetic epidermicin NI01 can protect Galleria mellonella larvae from infection with Staphylococcus aureus. J Antimicrob Chemother 68(10):2269–2273. doi: 10.1093/jac/dkt195 PubMedGoogle Scholar
  5. Harb H, van Tol EA, Heine H, Braaksma M, Gross G, Overkamp K, Hennen M, Alrifai M, Conrad ML, Renz H, Garn H (2013) Neonatal supplementation of processed supernatant from Lactobacillus rhamnosus GG improves allergic airway inflammation in mice later in life. Clin Exp Allergy 43(3):353–364. doi: 10.1111/cea.12047 CrossRefGoogle Scholar
  6. Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7(1):4–10CrossRefPubMedGoogle Scholar
  7. Jorjão AL, Oliveira FE, Leão MVP, Carvalho CAT, Jorge AOC, Oliveira LD (2015) Live and heat-killed Lactobacillus rhamnosus ATCC 7469 may induce modulatory cytokines profiles on macrophages RAW 264.7. Sci World J 2015:716749. doi: 10.1155/2015/716749 CrossRefGoogle Scholar
  8. Junqueira JC (2012) Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence 3(6):474–476. doi: 10.4161/viru.22493 CrossRefGoogle Scholar
  9. Köhler G (2015) Probiotics research in Galleria mellonella. Virulence 6(1):3–5. doi: 10.1080/21505594.2014.998967 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Nakayama Y, Moriya T, Sakai F, Ikeda N, Shiozaki T, Hosoya T, Nakagawa H, Miyazaki T (2014) Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci Rep 4:4638. doi: 10.1038/srep04638 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Rajendran R, Borghi E, Falleni M, Perdoni F, Tosi D, Lappin DF, O’Donnell L, Greetham D, Ramage G, Nile C (2015) Acetylcholine protects against Candida albicans infection by inhibiting biofilm formation and promoting hemocyte function in a Galleria mellonella infection model. Eukaryot Cell 14(8):834–844. doi: 10.1128/EC.00067-15 CrossRefGoogle Scholar
  12. Ramarao N, Nielsen-Leroux C, Lereclus D (2012) The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 70:e4392. doi: 10.3791/4392
  13. Semenova AD, Glazachev YI, Slepneva IA, Glupov VV (2014) Quantitative determination of nitric oxide production in haemocytes: nitrite reduction activity as a potential pathway of NO formation in haemolymph of Galleria mellonella larvae. Nitric Oxide 37:46–52. doi: 10.1016/j.niox.2013.12.011 CrossRefPubMedGoogle Scholar
  14. Shaurub EH (2012) Immunomodulation in insects post-treatment with abiotic agents: a review. Eur J Entomol 109(3):303–316CrossRefGoogle Scholar
  15. Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6(3):261 – 74. doi: 10.1007/s12263-011-0218-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, Jorge AO, Junqueira JC (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6(1):29–39. doi: 10.4161/21505594.2014.981486 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Wand ME, McCowen JW, Nugent PG, Sutton JM (2013) Use of the Galleria mellonella infection model to study the opportunistic pathogen Klebsiella pneumonia supports the presence of a multifaceted interaction with the host immune response. J Med Microbiol 62(Pt 12):1790–1798. doi: 10.1099/jmm.0.063032-0 CrossRefPubMedGoogle Scholar
  18. Whitten M, Sun F, Tew I, Schaub G, Soukou C, Nappi A, Ratcliffe N (2007) Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect Biochem Mol Biol 37(5):440–452CrossRefPubMedGoogle Scholar
  19. WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Disponível em:
  20. Zdybicka-Barabas A, Mak P, Jakubowicz T, Cytryńska M (2014) Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. Arch Insect Biochem Physiol 87(1):1–12. doi: 10.1002/arch.21175 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Adeline Lacerda Jorjão
    • 1
  • Felipe Eduardo de Oliveira
    • 1
  • Mariella Vieira Pereira Leão
    • 2
  • Antonio Olavo Cardoso Jorge
    • 1
  • Luciane Dias de Oliveira
    • 1
  1. 1.Department of Biosciences and Oral Diagnosis, Laboratory of Microbiology and Immunology, Institute of Science and TechnologyPaulista State University/UNESPSão José dos CamposBrazil
  2. 2.Bioscience Basic InstituteUniversity of TaubatéTaubatéBrazil

Personalised recommendations