Skip to main content

Advertisement

Log in

Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Neptunomonas sp. BPy-1 is an epiphytic bacterium isolated from in vitro culture of the red alga Pyropia yezoensis. It uses ethanol as a sole carbon source and promotes the growth of host alga. A related bacterium, Neptunomonas sp. BZm-1, was isolated from leaves of Zostera marina found in the Yatsushiro Sea (Japan). BZm-1 showed 99% 16S rRNA sequence identity with Neptunomonas sp. BPy-1. Similar to BPy-1, BZm-1 grew in artificial seawater (ASW) medium containing ethanol or butanol. When thalli were treated with a multi-enzyme cleaner, the growth of treated thalli was retarded, but the addition of BZm-1 to the medium promoted growth. To explore the benefits of epiphytic bacteria, indoleacetic acid (IAA) production by isolated bacteria was examined under conditions of limited nutrients. Salkowski assays and GC-MS analysis revealed that both BZm-1 and BPy-1 excreted IAA during growth in ASW medium containing glucose or ethanol in the presence of tryptophan. In ASW medium containing tryptophan but lacking a carbon source, neither isolate grow, but produced IAA. ASW medium includes nitrate as the sole nitrogen source. In the absence of carbon source, different nitrogen forms in the presence of tryptophan did not affect IAA production by the two isolates. These findings indicate that IAA production by the two isolates is strictly dependent on tryptophan but less affected by carbon and nitrogen sources. Based on the different origins of BPy-1 and BZm-1, this mode of IAA production seems to be conserved among relatives of BPy-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101

    Article  CAS  PubMed  Google Scholar 

  • Barrow GI, Feltham RKA (1993) Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd edn, Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Burke C, Kjelleberg S, Thomas T (2009) Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl Environ Microbiol 75:252–256

    Article  CAS  PubMed  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37:462–476

    Article  CAS  PubMed  Google Scholar 

  • Frommlet J, Guimarães B, Sousa L, Serôdio J, Alves A (2015) Neptunomonas phycophila sp. nov. isolated from a culture of Symbiodinium sp., a dinoflagellate symbiont of the sea anemone Aiptasia tagetes. Int J Syst Evol Microbiol 65:915–919

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Abe M, Kobayashi K, Yano K, Satomi M (2014) Isolation of Hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis. Microb Ecol 68:556–566

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:739–796

    Google Scholar 

  • Handayani ML, Matsuda R, Sasaki H, Takechi K, Takano H, Takio S (2014) Characterization of an epiphytic bacterium Neptunomonas sp. BPy-1 on the gametophytes of a red alga Pyropia yezoensis. Am J Plant Sci 5:3652–3661

    Article  Google Scholar 

  • Hollants J, Leliaert F, De Clerck O, Willems A (2013) What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol 83:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2010) Alteromonas macleodii 0444 and Neptunomonas sp. 0536, two novel probiotics for hatchery-reared Greenshell™ mussel larvae, Perna canaliculus. Aquaculture 309:49–55

    Article  Google Scholar 

  • Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Bio 45:73–80

    Article  CAS  Google Scholar 

  • Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotech Lett 19:1213–1215

    Article  CAS  Google Scholar 

  • Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:1598

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Mori IC, Matsuura T, Ikeda Y, Kojima M, Sakakibara H, Hirayama T (2016) Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds. J Appl Phycol 28:2539–2548

    Article  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis). PLoS One 8:e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namba A, Shigenobu Y, Kobayashi M, Kobayashi T, Oohara I (2010) A new primer for 16S rDNA analysis of microbial communities associated with Porphyra yezoensis. Fish Sci 76:873–878

    Article  CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga. Porphyra yezoensis. DNA Res 7:223–227

    Article  PubMed  Google Scholar 

  • Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense cd under in vitro conditions. Can J Microbiol 39:187–192

    Article  CAS  Google Scholar 

  • Ouyang L, Pei H, Xu Z (2017) Low nitrogen stress stimulating the indole-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic. Arch Microbiol 199:425–432

    Article  CAS  PubMed  Google Scholar 

  • Polne-Fuller M, Gibor A (1987) Calluses and callus-like growth in seaweeds: Induction and culture. Hydrobiologia 151/152:131–138

    Article  Google Scholar 

  • Provasoli L (1958) Effect of plant hormones on Ulva. Biol Bull 114:375–384

    Article  CAS  Google Scholar 

  • Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, Barteneva N, Paulson JN, Chai L, Clardy J, Kolter R (2016) Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5:e17473. doi:10.7554/eLife.17473

    Article  PubMed  PubMed Central  Google Scholar 

  • Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 61:217–225

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Reddy CRK (2014) Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol 88:213–230

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS. Microbiol Rev 31:425–448

    CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Vejan R, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:E573

    Article  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki A, Nakanishi K, Saga N (1998) Axenic tissue culture and morphogenesis in Porphyra yezoensis (Bangiales, Rhodophyta). J Phycol 34:1082–1087

    Article  Google Scholar 

  • Yokoya NS, Stirk WA, van Staden J, Novák O, Turecková V, Pencík A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205

    Article  CAS  Google Scholar 

  • Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yamane H, Chapman DJ (1993) The phytohormone profile of the red alga Porphyra perforata. Bot Mar 36:257–266

    Article  CAS  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. T. Masuda, Dr. K. Morimoto, Dr. Y. Henmi, and Mr. H. Murata for collecting Z. marina leaves. This work was supported by JSPS KAKENHI Grant numbers 25440158, 26117720, 15K07130, and 22580203. M.L. Handayani was supported by Directorate General of Higher Education, Ministry of National Education Indonesia (DIKTI) scholarship. In addition, thanks go to Dr. K. Takikawa, a director of the Yatsushiro Sea project for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Takio.

Additional information

Communicated by Yusuf Akhter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2836 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, R., Handayani, M.L., Sasaki, H. et al. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina . Arch Microbiol 200, 255–265 (2018). https://doi.org/10.1007/s00203-017-1439-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1439-1

Keywords