Archives of Microbiology

, Volume 200, Issue 2, pp 227–235 | Cite as

Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi

  • Dandan Wang
  • Zhi Huang
  • Hong He
  • Cong Wei
Original Paper


Plant sap-feeding insects of Hemiptera often form intimate symbioses with microbes to obtain nutrients. The cicada Subpsaltria yangi is the only species of the subfamily Tettigadinae known from China. Using high-throughput sequencing combined with fluorescence in situ hybridization analysis, we characterize the bacterial composition of the bacteriomes, testes, ovaries and eggs of two representative populations of this species which occur in different habitats and feed on different plant hosts. In both populations, the bacterial community diversity in the testes was significantly higher than that in other tissues. The obligate endosymbiont Candidatus Sulcia muelleri was observed in all samples and was dominant in the bacteriomes, ovaries and eggs. The usual co-resident endosymbiont Candidatus Hodgkinia cicadicola found in some other cicadas was not detected. Instead, a novel Rhizobiales bacterium which shows a ~ 81% 16S rDNA similarity to Ca. Hodgkinia cicadicola was detected. Given that the genome of Ca. Hodgkinia cicadicola exhibits rapid evolution, it is possible that this novel Rhizobiales bacterium is a related endosymbiont with beneficial trophic functions similar to that of Ca. Hodgkinia cicadicola hosted by several certain other cicadas. The presence of the novel Rhizobiales species in other cicadas and its involvement with the adaptive evolution of related cicada hosts require further investigation. Discrepancy of bacterial communities associated with testes between the two populations may be closely related to the geographic isolation and divergence of habitats and host plants. Our results are informative for further studies of evolutionary divergence of related endosymbionts hosted in cicadas.


Cicadidae Endosymbiont Candidatus Sulcia muelleri Candidatus Hodgkinia cicadicola High-throughput sequencing Fluorescence in situ hybridization 



The work was supported by the National Natural Science Foundation of China (No. 31572302) and the Chinese Universities’ Scientific Fund (Grant No. 2452017057). The authors would like to thank Mr. Zehai Hou (Northwest A&F University, China) for assistance in collecting insect specimens, and thank Mr. Yunxiang Liu (Northwest A&F University, China) for help with molecular identification of cicada eggs. The authors also would like to express our sincere thanks to Prof. John Richard Schrock (Emporia State University, USA) for revising this manuscript and providing valuable comments.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

203_2017_1432_MOESM1_ESM.tif (1.6 mb)
Fig. S1 Rarefaction curves for different samples of S. yangi from two populations. Names of samples are indicated in Table 1 (TIFF 1665 kb)
203_2017_1432_MOESM2_ESM.xls (26 kb)
Table S1 Statistical measures using a subset of sequences per sample. Names of samples are indicated in Table 1. The “No. of modified OTUs” means the clean OTUs that the low-abundance (< 0.005%) OTUs which may be the result of spurious hits were eliminated (XLS 26 kb)


  1. Bennett GM, Moran NA (2015) Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA 112:10169–10176. doi: 10.1073/pnas.1421388112 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. doi: 10.1038/nmeth.2276 CrossRefPubMedGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chou I, Lei Z, Li L, Lu X, Yao W (1997) The Cicadidae of China (Homoptera: Cicadoidea). Tianze Press, Hong KongGoogle Scholar
  5. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi: 10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gosalbes MJ, Latorre A, Lamelas A, Moya A (2010) Genomics of intracellular symbionts in insects. Int J Med Microbiol 300:271–278. doi: 10.1016/j.ijmm.2009.12.001 CrossRefPubMedGoogle Scholar
  8. Hou Z, Li Q, Wei C (2014) Morphology and identification of the final instar nymphs of three cicadas (Hemiptera, Cicadidae) in Guanzhong Plain, China based on comparative morphometrics. ZooKeys 425:33–50. doi: 10.3897/zookeys.425.7897 CrossRefGoogle Scholar
  9. Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 79:5013–5022. doi: 10.1128/AEM.01527-13 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T (2016) Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253:903–912. doi: 10.1007/s00709-015-0854-x CrossRefPubMedGoogle Scholar
  11. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing bacterial communities. Appl Environ Microbiol 71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Luo C, Wei C (2015a) Intraspecific sexual mimicry for finding females in a cicada: males produce ‘female sounds’ to gain reproductive benefit. Anim Behav 102:69–76. doi: 10.1016/j.anbehav.2015.01.013 CrossRefGoogle Scholar
  13. Luo C, Wei C (2015b) Stridulatory sound-production and its function in females of the cicada Subpsaltria yangi. PLoS One 10:e0118667. doi: 10.1371/journal.pone.0118667 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. doi: 10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  15. McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397. doi: 10.1073/pnas.0708855104 CrossRefPubMedPubMedCentralGoogle Scholar
  16. McCutcheon JP, McDonald BR, Moran NA (2009a) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA 106:15394–15399. doi: 10.1073/pnas.0906424106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. McCutcheon JP, McDonald BR, Moran NA (2009b) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565. doi: 10.1371/journal.pgen.1000565 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 8:e53608. doi: 10.1371/journal.pone.0053608 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Moran NA, Plague GR, Sandström JP, Wilcox JL (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100(Suppl 2):S14543–S14548. doi: 10.1073/pnas.2135345100 CrossRefGoogle Scholar
  20. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810. doi: 10.1128/AEM.71.12.8802-8810.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi: 10.1146/annurev.genet.41.110306.130119 CrossRefPubMedGoogle Scholar
  22. Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 47:217–225. doi: 10.1007/s13355-012-0110-1 CrossRefGoogle Scholar
  23. Redak RA, Purcell AH, Lopes JR, Blua MJ, Mizell RF, Andersen PC (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270. doi: 10.1146/annurev.ento.49.061802.123403 CrossRefPubMedGoogle Scholar
  24. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing bacterial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12:68–87. doi: 10.1186/1471-2148-12-87 CrossRefGoogle Scholar
  27. Van Leuven JT, McCutcheon JP (2012) An AT mutational bias in the tiny GC-rich endosymbiont genome of Hodgkinia. Genome Biol Evol 4:24–27. doi: 10.1093/gbe/evr125 CrossRefPubMedGoogle Scholar
  28. Van Leuven JT, Meister RC, Simon C, McCutcheon JP (2014) Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–1280. doi: 10.1016/j.cell.2014.07.047 CrossRefPubMedGoogle Scholar
  29. Wang X, Qiu Y, Wei C (2016) A new species of the genus Hyalessa (Hemiptera, Cicadidae) from China, with DNA barcoding data and a key to related species. Zootaxa 4085:296–300. doi: 10.11646/zootaxa.4085.2.10 CrossRefPubMedGoogle Scholar
  30. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng JF (2010) One bacterial cell, one complete genome. PLoS One 5:e10314. doi: 10.1371/journal.pone.0010314 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zheng Z, Wang D, He H, Wei C (2017) Bacterial diversity of the bacteriomes, reproductive organs and tissues of digestive and excretory systems associated with two cicada species (Hemiptera: Cicadidae). PLoS One 12:e0175903. doi: 10.1371/journal.pone.0175903 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou W, Nan X, Zheng Z, Wei C, He H (2015) Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J Insect Sci 15:131. doi: 10.1093/jisesa/iev113 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.College of ForestryNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations