Fecal microbiota of lambs fed purple prairie clover (Dalea purpurea Vent.) and alfalfa (Medicago sativa)

Abstract

The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Açik MN, Cetinkaya B (2006) Heterogeneity of Campylobacter jejuni and Campylobacter coli strains from healthy sheep. Vet Microbiol 115(4):370–375

    Article  PubMed  Google Scholar 

  2. Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Ström K, Ahrné S, Holm C, Molin G, Berger K (2012) Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab 9:105

    CAS  Article  Google Scholar 

  3. Bae HD, McAllister TA, Yanke J, Cheng KJ, Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59:2131–2138

    Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 75(1):289–300

    Google Scholar 

  5. Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88:3977–3983

    CAS  Article  PubMed  Google Scholar 

  6. Canadian Council on Animal Care (2009) The care and use of farm animals in research, teaching and testing. CCAC, Ottawa, pp 12–15

    Google Scholar 

  7. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    CAS  Article  PubMed  Google Scholar 

  8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931

    Article  PubMed  Google Scholar 

  10. Dao MC, Everard A, Aronwisnewsky J, Sokolovska N, Prifti E, Verger EO et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426

    CAS  Article  PubMed  Google Scholar 

  11. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dudonné S, Varin TV, Anhê FF, Dubé P, Roy D, Pilon G, Marette A, Levy E, Jacquot C, Urdaci M et al (2015) Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. Pharmanutrition 3:89–100

    Article  Google Scholar 

  13. Durso LM, Harhay GP, Smith TP, Bono JL, Desantis TZ, Harhay DM, Andersen GL, Keen JE, Laegreid WW, Clawson ML (2010) Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 76:4858–4862

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  Article  PubMed  Google Scholar 

  15. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Faith DP (1993) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  18. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111

    CAS  Article  PubMed  Google Scholar 

  19. Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates Gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Grauke LJ, Udva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ (2002) Gastrointestinal-tract location of Escherichia coli O157:H7 in ruminants. Appl Environ Microbiol 68(5):2269–2277

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gunderson J, McCutchan T, Sogin M (1986) Sequence of the small subunit ribosomal RNA gene expressed in the bloodstream stages of Plasmodium berghei: evolutionary implications. J protozool 33:525–529

    CAS  Article  PubMed  Google Scholar 

  22. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–1152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Holman DB, Chénier MR (2014) Temporal changes and the effect of subtherapeutic concentrations of antibiotics in the gut microbiota of swine. FEMS Microbiol Ecol 90(3):599–608

    CAS  Article  PubMed  Google Scholar 

  24. Huang QQ, Jin L, Xu Z, Barbieria LR, Acharyaa S, Hu TM, Stanford K, McAllister TA, Wang Y (2015) Effects of purple prairie clover (Dalea purpurea Vent.) on feed intake, nutrient digestibility and faecal shedding of Escherichia coli O157:H7 in lambs. Anim Feed Sci Technol 207:51–61

    CAS  Article  Google Scholar 

  25. Huang QQ, Hu TM, Xu Z, Long L, McAllister TA, Acharya S, Zeller W, Hardcastle E, Drake C, Mueller-Harvey I, Wang Y (2017) Structural composition and protein precipitation capacity of condensed tannins from purple prairie clover (Dalea purpurea Vent.). J Anim Sci 95(Suppl 4):141

    Article  Google Scholar 

  26. Hume ID (1997) Fermentation in the hindgut of mammals. In: Mackie RI, White BA (eds) Gastrointestinal microbiology. Chapman and Hall, New York, pp 84–115

    Google Scholar 

  27. Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, Alawi M, Poehlein A, Chow J, Turaev D, Rattei T, Schmeisser C, Salomon J, Olsen PB, Daniel R, Grundhoff A, Borchert MS, Streit WR (2014) A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 9(9):e106707

    Article  PubMed  PubMed Central  Google Scholar 

  28. Inglis GD, Morck DW, McAllister TA, Entz T, Olson ME, Yanke LJ, Read RR (2006) Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl Environ Microbiol 72(6):4088–4095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Jakhesara S, Koringa P, Ramani U, Ahir V, Tripathi A, Soni P, Singh K, Bhatt V, Patel J, Patel M (2010) Comparative study of tannin challenged rumen microbiome in goat using high throughput sequencing technology. Dev Microbiol Mol Biol 1:95–106

    Google Scholar 

  30. Jin L, Wang Y, Iwaasa AD, Xu Z, Li Y, Schellenberg MP, Liu XL, McAllister TA, Stanford K (2015) Purple prairie clover (Dalea purpurea Vent) reduces fecal shedding of Escherichia coli in pastured cattle. J Food Prot 78(8):1434–1441

    CAS  Article  PubMed  Google Scholar 

  31. Jones JA, McAllister TA, Muir AD, Cheng KJ (1994) Effects of sanfoin (Onobrychis vicifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 60:1374–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim M, Wells JE (2016) A meta-analysis of bacterial diversity in the feces of cattle. Curr Microbiol 72:145–151

    CAS  Article  PubMed  Google Scholar 

  33. Kim M, Kim J, Kuehn L, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson AK, Wells JE (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694

    CAS  Article  PubMed  Google Scholar 

  34. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157(9):876–884

    CAS  Article  PubMed  Google Scholar 

  35. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Iwaasa A, Wang Y, Jin L, Han G, Zhao M (2014) Condensed tannins concentration of selected prairie legume forages as affected by phenological stages during two consecutive growth seasons in western Canada. Can J Plant Sci 94:817–826

    Article  Google Scholar 

  37. Liu XL, Hao YQ, Jin L, Xu ZJ, McAllister TA, Wang Y (2013) Anti-Escherichia coli O157:H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 18:2183–2199

    CAS  Article  PubMed  Google Scholar 

  38. Lloyd SK, Ritchie LE, Hicks KK, Azcarate-Peril MA, Turner ND (2016) Modulation of colonic microbiota populations by polyphenolic containing sorghum brans may protect against development of metabolic disease. FASEB 30(1 Suppl):683.4

    Google Scholar 

  39. Logan JM, Burnens A, Linton D, Lawson AJ, Stanley J (2000) Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int J Syst Evol Microbiol 50(2):865–872

    CAS  Article  PubMed  Google Scholar 

  40. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Makkar HP, Blümmel M, Becker K (1995) Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br J Nutr 73:897–913

    CAS  Article  PubMed  Google Scholar 

  42. Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 5:16116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. McAllister TA, Bae HD, Yank LJ, Cheng KJ, Muir AD (1993) Effect of condensed tannins on the cellulolytic activity of Fibrobacter succinogenes S85. In: Proceedings of the world conference on animal production, vol. 36, Edmonton, Canada, pp 66–67

  44. Min BR, Attwood GT, Reilly K, Sun W, Peters JS, Barry TN, McNabb WC (2002) Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbiol 48:911–921

    CAS  Article  PubMed  Google Scholar 

  45. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 105:3–19

    Article  Google Scholar 

  46. Min BR, Attwood GT, McNabb WC, Molan AL, Barry TN (2005) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim Feed Sci Technol 121:45–58

    CAS  Article  Google Scholar 

  47. Min BR, Solaiman S, Sange R, Eun JS (2014) Gastrointestinal bacterial and Methanogenic archaea diversity dynamics associated with condensed tannins-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol 4:1–11

    Article  Google Scholar 

  48. Morgavi DP, Rathahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H (2015) Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol 6:1060

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037

    CAS  Article  Google Scholar 

  50. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Oporto B, Hurtado A (2011) Emerging thermotolerant Campylobacter species in healthy ruminants and swine. Foodborne Pathog Dis 8(7):807–813

    Article  PubMed  Google Scholar 

  52. Plovier H, Everard A, Druart C, Depommier C, Van HM, Geurts L et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113

    CAS  Article  PubMed  Google Scholar 

  53. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  Article  PubMed  Google Scholar 

  54. Rodriguez C, Taminiau B, Brévers B, Avesani V, Van BJ, Leroux A, Gallot M, Bruwier A, Amory H, Delmée M, Daube G (2015) Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol 15(1):1–14

    Article  Google Scholar 

  55. SAS Institute Inc (2009) 2009 SAS Online Doc®9.1.3. SAS Institute Inc., Cary, NC

  56. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin M (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77:2992–3001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  58. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735

    CAS  Article  PubMed  Google Scholar 

  59. Shterzer N, Mizrahi I (2015) The animal gut as a melting pot for horizontal gene transfer. Can J Microbiol 61:603–605

    CAS  Article  PubMed  Google Scholar 

  60. Smith AH, Mackie RI (2004) Effect of condensed tannin on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol 70:1104–1115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Stanley K, Jones K (2003) Cattle and sheep farms as reservoirs of Campylobacter. J Appl Microbiol 94(Suppl):104S–113S

    Article  PubMed  Google Scholar 

  62. Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE (2012) Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet Res 8:231

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN (2010) A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 54(6):747–759

    CAS  Article  PubMed  Google Scholar 

  64. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M et al (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81(3):965–973

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Vasta V, Yanez-Ruiz DR, Mele M, Serra A, Luciano G, Lanza M, Biondi L, Priolo A (2010) Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl Environ Microbiol 76:2549–2555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. Structure 585:20

    Google Scholar 

  67. Wang Y, Jin L, Ominski K, He M, Xu Z, Krause D, Acharya S, Wittenberg K, Liu X, McAllister TA, Stanford K (2013) Screening of condensed tannins from Canadian prairie forages for anti-Escherichia coli O157:H7 with an emphasis on purple prairie clover (Dalea purpurea Vent). J Food Prot 76:560–567

    CAS  Article  PubMed  Google Scholar 

  68. Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P (2014) Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ Microbiol Rep 6(6):631–639

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Ontario Ministry of Agriculture, Food and Rural Affairs and Agriculture and Agri-Food Canada (AAFC). Qianqian Huang acknowledges the China Scholarship Council for awarding scholarship to conduct this research at Lethbridge Research and Development Centre (LeRDC) of AAFC. The authors thank the LeRDC sheep barn staff and B. Baker, D. Messenger, and F. van Herk for technical assistance. The LeRDC contribution number is 38716083.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuxi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Shuang-Jiang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Holman, D.B., Alexander, T. et al. Fecal microbiota of lambs fed purple prairie clover (Dalea purpurea Vent.) and alfalfa (Medicago sativa). Arch Microbiol 200, 137–145 (2018). https://doi.org/10.1007/s00203-017-1427-5

Download citation

Keywords

  • Purple prairie clover
  • Condensed tannins
  • 454 Pyrosequencing
  • Gut microbiota