Skip to main content
Log in

Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera

  • Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Recombinant Bt construct was prepared by exchange of pore forming domain I with cry1Ac to cry9Aa gene by overlap extension PCR (OE-PCR) technique. Construction of cry1Ac-cry9Aa was accomplished by six base pair homology at 3′ ends of PCR products of domain I of cry1Ac and domain II and III of cry9Aa. The recombinant toxin was also modified by deletion of N-terminal alpha helix-1 of recombinant toxin. Both Cry toxins were expressed in E. coli BL21(DE3) plysS and purified by His-tag purification. Upon insect bioassay analysis against devastating crop pest Helicoverpa armigera, toxicity of recombinant toxin was found around fivefold higher than native Cry1Ac while alpha helix-1 deleted N-terminal modified toxin did not resulted in significant increase in toxicity. The recombinant Cry toxins such as Cry1Ac-Cry9Aa and Cry1Ac-Cry9AaMod may be used for insect pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Bt :

Bacillus thuringiensis

cry1Ac-cry9Aa :

Hybrid toxin with Cry1Ac domain I and Cry9Aa domain II and III

cry1Ac-cry9AaMod :

N-terminal alpha helix-1 deletion in cry1Ac-cry9Aa

References

  • Bravo A, Likitvivatanavong S, Gill SS, Soberon M (2011) Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarino R, Ceddia G, Areal FJ, Park J (2015) The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Plant Biotechnol J 13:601–612

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti Mandaokar SK, Kumar PA, Sharma RP (1998) Efficacy of lepidopteran specific δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera. J Invertebr Pathol 72(3):336–337

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar K, Kumari A, Kalia V, Gujar GT (2005) Baseline susceptibility of the American bollworm, Helicoverpa armigera (Hübner) to Bacillus thuringiensis Berl var. kurstaki and its endotoxins in India. Curr Sci 88:167–175

    Google Scholar 

  • Czepak C, Albernaz KC, Vivan LM, Guimaraes HO, Carvalhais T (2013) First reported occurrence of Helicoverpa armigera(Hubner)(Lepideptera:Noctuidae) in Barazil. Pesqui Agropecu Trop 43(1):110–113

    Article  Google Scholar 

  • de Maagd RA, Kwa MS, Van der Klei H, Yamamoto T, Schipper B, Vlak JM, Stiekema WJ, Bosch D (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA (b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microb 62(5):1537–1543

    Google Scholar 

  • de Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but Not All, Cry1-Cry1C hybrids. Appl Environ Microbiol 66(4):1559–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonise the insect world. Trends Genet 17(4):193–199

    Article  PubMed  Google Scholar 

  • Deist BR, Michael AR, Maria TF, Michael JA, Bonning B (2014) Bt toxin modification for enhanced efficacy. Toxin Rev 6:3005–3027

    Article  CAS  Google Scholar 

  • Ding X, Luo Z, Xia L, Gao B, Sun Y, Zhang Y (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56:442–447

    Article  CAS  PubMed  Google Scholar 

  • Ge AZ, Pfister RM, Dean DH (1990) Hyper-expression of a Bacillus thuringiensis delta-endotoxin encoding gene in Escherichia coli: properties of the product. Gene 93:49–54

    Article  CAS  PubMed  Google Scholar 

  • Gujar GT, Kalia V, Kumari A, Singh BP, Mittal A, Nair R, Mohan M (2007) Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. J Invertebr Pathol 95(3):214–219

    Article  CAS  PubMed  Google Scholar 

  • Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2(4):924–932

    Article  CAS  PubMed  Google Scholar 

  • James C (2013) ISAAA briefs No. 46: Global status of commercialized biotech/GMcrops. ISAAA, Ithaca

    Google Scholar 

  • Karlova R, Weemen-Hendriks M, Naimov S, Ceron J, Dukiandjiev S, de Maagd RA (2005) Bacillus thuringiensis δ-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. J Invertebr Pathol 88(2):169–172

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan A, Valarmathi R, Nandini S, Nandhakumar MR (2012) Genetically modified crops: insect. Resist Biotech 11:119–126

    Article  Google Scholar 

  • Knight JS, Broadwell AH, Grant WN, Shoemaker CB (2004) A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains. J Econ Entomol 97(6):1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Kumar AM, Aronson AI (1999) Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis δ-endotoxin. J Bacteriol 181(19):6103–6107

    CAS  PubMed  Google Scholar 

  • Kumar KP, Gujar GT (2005) Baseline susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to Bacillus thuringiensis Cry1A toxins in India. Crop prot 24(3):207–212

    Article  CAS  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Transgenic crop plants expressing synthetic cry9Aa gene are protected against insect damage. Plant Sci 160(2):341–353

    Article  CAS  PubMed  Google Scholar 

  • Lammer JW, Macleod A (2007) Report of a pest risk analysis Helicoverpa armigera (Hubner). http://webarchive.nationalarchives.gov.uk/20140904094530/, http://www.fera.defra.gov.uk/plants/planthealth/pestsDiseases/documents/helicoverpa.pdf. Accessed 18 Nov 2016

  • Li H, Bouwer G (2012) Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. J Invertebr Pathol 109(1):110–116

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Heckel DG, Akhurst R (2002) Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J Invertebr Pathol 80(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Mandal CC, Gayen S, Basu A, Ghosh KS, Dasgupta S, Maiti MK, Sen SK (2007) Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20(12):599–606

    Article  CAS  PubMed  Google Scholar 

  • Marchetti E, Alberghini S, Battisti A, Squartini A, Baronio P, Dindo ML (2009) Effects of conventional and transgenic Bacillus thuringiensis galleriae toxin on Exorista larvarum (Diptera: Tachinidae), a parasitoid of forest defoliating Lepidoptera. Biocontrol Sci Technol 19(5):463–473

    Article  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9(5):409–417

    Article  CAS  PubMed  Google Scholar 

  • Naimov S, Weemen-Hendriks M, Dukiandjiev S, de Maagd RA (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the colorado potato beetle. Appl Environ Microb 67(11):5328–5330

    Article  CAS  Google Scholar 

  • Naimov S, Nedyalkova R, Staykov N, Weemen-Hendriks M, Minkov I, de Maagd RA (2014) A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hübner). J Invert Pathol 115:99–101

    Article  CAS  Google Scholar 

  • Patel KD, Purani S, Ingle SS (2013) Distribution and diversity analysis of Bacillus thuringiensis cry genes in different soil types and geographical regions of India. J Invertebr Pathol 112(2):116–121

    Article  CAS  PubMed  Google Scholar 

  • Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (1996) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci USA 93:4338–14343

    Article  Google Scholar 

  • Rang C, Vachon V, Coux F, Carret C, Moar WJ, Brousseau R, Schwartz JL, Laprade R, Frutos R (2001) Exchange of domain I from Bacillus thuringiensis Cry1 toxins influences protoxin stability and crystal formation. Curr Sci 43(1):1–6

    Article  CAS  Google Scholar 

  • Sakai H, Howlader MTH, Ishida Y, Nakaguchi A, Oka K, Ohbayashi K, Yamagiwa Masashi, Hayakawa T (2007) Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. J Biosci Bioeng 103(4):381–383

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JL, Potvin L, Chen XJ, Brousseau R, Laprade R, Dean DH (1997) Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryIAa, Bacillus thuringiensis toxin. Appl Environ Microbiol 63:3978–3984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Guanming, Chavas Jean-Paul, Lauer Joseph (2013) Commercialized transgenic traits maize productivity and yield risk. Nat Biotechnol 31:111–114

    Article  PubMed  Google Scholar 

  • Shu C, Su H, Zhang J, He K, Huang D, Song F (2013) Characterization of cry9Da4, cry9Eb2, and cry9Ee1 genes from Bacillus thuringiensis strain T03B001. Appl Microbiol Biot 97(22):9705–9713

    Article  CAS  Google Scholar 

  • Siegfried BD, Spencer T, Nearman J (2000) Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis.J. Econ Entomol 93:1265–1268

    Article  CAS  Google Scholar 

  • Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318(5856):1640–1642

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Fabrick JA, Unnithan GC, Yelich AJ, Masson L, Zhang J, Bravo A, Soberon M (2013) Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab. PLoS One 8(11):80496

    Article  Google Scholar 

  • Walters FS, Stacy CM, Lee MK, Palekar N, Chen JS (2008) An engineered chymotrypsin/cathepsin G site in domain I render Bacillus thuringiensis Cry3Aa active against western corn root worm larvae. Appl Environ Microbiol 74:367–374

    Article  CAS  PubMed  Google Scholar 

  • Wolfersberger MG, Chen XJ, Dean DH (1996) Site-directed mutations in the third domain of the Bacillus thuringiensis δ-endotoxin affect potassium uptake by brush border membrane vesicles. Appl Environ Microbiol 62:279–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Aronson AI (1992) Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem 267(4):2311–2317

    CAS  PubMed  Google Scholar 

  • Wu SJ, Koller CN, Miller DL, Bauer LS, Dean DH (2000) Enhanced toxicity of Bacillus thuringiensis Cry3A δ-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett 473(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Jigar V. Shah would like to thank University Grant commission (UGC-RFMS), New Delhi for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay S. Ingle.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J.V., Yadav, R. & Ingle, S.S. Engineered Cry1Ac-Cry9Aa hybrid Bacillus thuringiensis delta-endotoxin with improved insecticidal activity against Helicoverpa armigera . Arch Microbiol 199, 1069–1075 (2017). https://doi.org/10.1007/s00203-017-1407-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1407-9

Keywords

Navigation