Skip to main content
Log in

The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akimoto-Tomiyama C, Furutani A, Ochiai H (2014) Real time imaging of phytopathogenic bacteria Xanthomonas campestris pv. campestris MAFF106712 in “plant sweet home”. PLOS One 9:1–15

    Article  Google Scholar 

  • Allison DG, Sattenstall MA (2007) The influence of green fluorescent protein incorporation on bacterial physiology: a note of caution. Appl Microbiol 103:318–324

    Article  CAS  Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, BjØren SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different GFP reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48:139–148

    Article  CAS  PubMed  Google Scholar 

  • Bottin A, Larche L, Villalba F, Gaulin E, Esquerreè-Tugayeè MT, Rickauer M (1999) Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phytophthora parasitica var. Nicotianae. FEMS Microbiol Lett 176:51–56

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Hsiang T, Goodwin PH (2003) Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J Microbiol Methods 53:113–122

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Konstantin A, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev Publ 90:1103–1163

    Article  CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow A (1996) FACS-optimized mutants of the green fluorescens protein (GFP). Gene 173:33–38

    Article  CAS  PubMed  Google Scholar 

  • Cubero J (2008) Utilización de la proteína de fluorescencia verde (GFP) para estudios de supervivencia y expresión génica en bacterias de plantas. In: Pallás V, Escobar C, Rodrígue-Palenzuela P, Marcos JF (eds) Herramientas biotecnológicas en fitopatología. Mundiprensa, Madrid, pp 269–283

    Google Scholar 

  • Cubero J, Martínez MC, Llop P, López MM (1999) A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumours. J Appl Microbiol 86:591–602

    Article  CAS  PubMed  Google Scholar 

  • Cubero J, Graham JH, Zhang Y, Jones JB, Wilson M (2005) Unstable variants of the green fluorescent protein (GFP) for study of bacterial survival on citrus. IUMS2005 Microbes in a changing word 149-B-1377

  • Cubero J, Gell I, Johnson EG, Redondo A, Graham JH (2011) Unstable green fluorescent protein for study of Xanthomonas citri subsp. citri survival on citrus. Plant Pathol 60:977–985

    Article  CAS  Google Scholar 

  • Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM (2012) Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeia sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathol 61:677–688

    Article  Google Scholar 

  • Dumas B, Centis S, Sarrazin N, Esquerre-Tugaye MT (1999) Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection. Appl Environ Microbiol 65:1769–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn AR, Fry BA, Lee TY, Conley KD, Balaji V, Fry WE, McLeod A, Smart CD (2013) Transformation of Phytophthora capsici with genes for green and red fluorescent protein for use in visualizing plant-pathogen interactions. Australas Plant Pathol 42:583–593

    Article  CAS  Google Scholar 

  • Eijlander RT, Kuipers OP (2013) Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus. Appl Environ Microbiol 79:5643–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–199

    Article  CAS  PubMed  Google Scholar 

  • He P, Chai L, Li L, Hao L, Shao L, Lü F (2013) In situ visualization of the change in lignocellulose biodegradability during extended anaerobic bacterial degradation. RSC Adv 3:11759–11773

    Article  CAS  Google Scholar 

  • Hötzer B, Ivanov R, Brumbarova T, Bauer P, Jung G (2012) Visualization of Cu2+ uptake and release in plant cells by fluorescence lifetime imaging microscopy. FEBS J 279:410–419

    Article  PubMed  Google Scholar 

  • Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10:1–32

    Article  CAS  Google Scholar 

  • Krzyzanowska D, Obuchowski M, Bikowski M, Rychlowski M, Jafra S (2012) Colonization of potato rhizosphere by GFP-tagged Bacillus subtillis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors 12:17608–17619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen S, Zuo C, Sun Q, Ye Q, Yi G, Huang B (2011) The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp cubense race 4. Eur J Plant Pathol 131:327–340

    Article  CAS  Google Scholar 

  • Maor R, Puyesky M, Horwitz B, Sharon A (1998) Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res 102:491–496

    Article  Google Scholar 

  • Misteli T, Spector DL (1997) Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 15:961–964

    Article  CAS  PubMed  Google Scholar 

  • Njoroge SMC, Vallad GE, Park S-Y, Kang S, Koike ST, Bolda M, Burman P, Polonik W, Subbarao KV (2011) Phenological and phytochemical changes correlate with differential interactions of Verticillium dahlia with broccoli and cauliflower. Phytopathology 101:523–534

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Roberts AG, Santa-Cruz S, Boevink P, Prior DAM, Smallcombe A (1997) Using GFP to study virus invasion and spread in plant tissues. Nature 388:401–402

    Article  CAS  Google Scholar 

  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  PubMed  Google Scholar 

  • Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rediers H, Rainey PB, Vanderleyden J, De Mot R (2005) Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 69:217–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Moreno L, Jiménez AJ, Ramos C (2009) Endopathogenic lifestyle of Pseudomonas savastanoi pv. savastanoi in olive knots. Microb Biotechnol 2:476–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355

    Article  CAS  PubMed  Google Scholar 

  • Sexton AC, Howlett BJ (2001) Green Fluorescent Protein (GFP) as a reporter in the Brassica—Leptosphaeria maculans interaction. Physiol Mol Plant Pathol 58:13–21

    Article  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  • Si-Ammour A, Mauch-Mani B, Mauch F (2003) Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: β-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol Plant Pathol 4:237–248

    Article  CAS  PubMed  Google Scholar 

  • Stuurman N, Bras CP, Schlaman HRM, Wijfjes AHM, Bloemberg G, Spaink HP (2000) Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize Rhizobia interacting with plants. MPMI 13:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artefact of the N-terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallad GE, Subbarao KV (2008) Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahlie. Phytopathology 98:871–885

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400–403

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Kang L, Anand A, Lazarovits G, Mysore KS (2007) Monitoring in plant bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytol 174:212–223

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Moss LG, Phillips GN (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA 92:7036–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Callaway M, Jones JB, Wilson M (2009) Visualization of hrp gene expression in Xanthomonas euvesicatoria in the tomato phyllosphere. Eur J Plant Pathol 124:379–390

    Article  CAS  Google Scholar 

  • Zupan J, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Vallejo, E. Ferragud and M. Sáez for their technical assistance and Instituto Valenciano de Investigaciones Agrarias (IVIA) for providing C58 and X1609 strains. The research was supported by the Florida Citrus Production Research Advisory Council, FDOC contract 00079694, and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) project RTA2006-00149. We thank J.B. Jones for kindly providing plasmid pUFZ75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Cubero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabuquillo, P., Gea, A., Matas, I.M. et al. The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris . Arch Microbiol 199, 581–590 (2017). https://doi.org/10.1007/s00203-016-1327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1327-0

Keywords

Navigation