Skip to main content
Log in

Stress responses of Acinetobacter strain Y during phenol degradation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Quantification of gene expression of Acinetobacter strain Y under 1000 mg/l of phenol was investigated using qPCR and proteomic analyses. The results show that Acinetobacter strain Y utilized 100 % of phenol within 18 h of exposure. The results of qPCR and proteomic analyses demonstrate a sequential expression of phenol-degrading genes of Acinetobacter strain Y via the ortho-pathway followed by the β-ketoadipate pathway. Many stress-responsive proteins such as chaperones, chaperonins, porins and the enzymes involved in the signal transduction pathway were upregulated especially in the early stage. The stressed bacteria produced more ABC-type transporters, membrane receptors and efflux pumps to mitigate the impacts of phenol stress. The functions of TCA/glyoxylate cycle and oxidative phosphorylation processes were negatively affected. Many enzymes in the gluconeogenesis pathway were upregulated. This study demonstrates bacterial strategies of Acinetobacter strain Y via the energy saving mechanisms and the coordinated control between carbon (C)- and nitrogen (N)-limitations in coping with the stress by scavenging the reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater. 20th edn, In: Greenberg AE, Clesceri LS, Eaton AS (eds) American Public Health Association, American Water Works Association (AWWA), Water Environment Federation (WEF)

  • Andersen JL, He G-X, Kakarla P et al (2015) Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholera and Staphylococcus aureus Bacterial Food Pathogens. Int J Environ Res Public Health 12:1487–1547. doi:10.3390/ijerph120201487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold T, Zeth K, Linke D (2009) Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem 284:6403–6413. doi:10.1074/jbc.M808504200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardwell JC, Craig EA (1988) Ancient heat shock gene is dispensable. J Bacteriol 170:2977–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benndorf D, Loffhagen N, Babel W (2001) Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett 200:247–252

    Article  CAS  PubMed  Google Scholar 

  • Bleichrodt FS, Fischer R, Gerischer UC (2010) The beta-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. Microbiology 156:1313–1322. doi:10.1099/mic.0.037424-0

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381

    Article  PubMed  PubMed Central  Google Scholar 

  • Britton RA (2009) Role of GTPases in bacterial ribosome assembly. Ann Rev Microbiol 63:155–176

    Article  CAS  Google Scholar 

  • Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rösch P (2010) A NusE:NusG complex links transcription and translation. Science 328:501–504. doi:10.1126/science.1184953

    Article  CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Frangipani E, Visca P (2006) Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63:942–949

    Article  CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P (2008) Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese. J Mol Microbiol Biotechnol 15:199–211. doi:10.1159/000121331

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen CN, Hollander A (2011) TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front Microbiol 27:117. doi:10.3389/fmicb.2011.00117

    Google Scholar 

  • Craven SH, Ezezika OC, Momany C, Neidle EL (2008) LysR homologs in Acinetobacter: insights into a diverse and prevalent family of transcriptional regulators. In: Gerischer UC (ed) Acinetobacter Molecular Biology, 1st edn. Caister Academic Press, Norwich, pp 163–202

    Google Scholar 

  • Delhaye A, Collet A-F, Laloux G (2016) Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio 7(1):e00047-16

    PubMed  PubMed Central  Google Scholar 

  • Donovan GT, Norton JP, Bower JM, Mulvey MA (2013) Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli. Infect Immun 81:249–258. doi:10.1128/IAI.00796-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando DM, Kumar A (2013) Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics 2:163–181. doi:10.3390/antibiotics2010163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontenelle C, Blanco C, Arrieta M, Dufour V, Trautwetter A (2011) Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC Microbiol 11:100. doi:10.1186/1471-2180-11-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng A, Lim CJ (2007) Proteome analysis of the adaptation of a phenol-degrading bacterium Acinetobacter sp. EDP3 to the variation of phenol loadings. Chin J Chem Eng 15(6):781–787

    Article  CAS  Google Scholar 

  • Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiley PJ (2013) Regulation of iron–sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe–2S]–IscR in Escherichia coli. Mol Microbiol 87:478–492

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida MG, Pessione E, Mazzoli R, Dellavalle G, Barello C, Conti A, Giunta C (2001) Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens as revealed by proteome analysis. Electrophoresis 22:1705–1711

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147. doi:10.1128/JB.183.6.2145-2147.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graumann J, Lilie H, Tang X, Tucker KA et al (2001) Activation of the redox-regulated molecular chaperone Hsp33—a two-step mechanism. Structure 9:377–387

    Article  CAS  PubMed  Google Scholar 

  • Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V (2009) A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genom 10:470. doi:10.1186/1471-2164-10-470

    Article  Google Scholar 

  • Hantke K (1990) Dihydroxybenzoylserine—a siderophore for E. coli. FEMS Microbiol Lett 55:5–8

    CAS  PubMed  Google Scholar 

  • Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D (2005) Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243:251–258

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochimica et Biophysica Acta (BBA)—MolCell Res 1803:650–661

    Article  CAS  Google Scholar 

  • Hunter GJ, Hunter T (2013) GroESL protects superoxide dismutase (SOD)—deficient cells against oxidative stress and is a chaperone for SOD. Health 5:1719–1729. doi:10.4236/health.2013.510232 (Article ID: 38248)

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  PubMed  Google Scholar 

  • Kim E-A, Kim JY, Kim S-J, Park KR, Chung H-J, Leem S-H, Kim SI (2004) Proteomic analysis of Acinetobacter lwoffii K24 by 2-D gel electrophoresis and electrospray ionization quadrupole-time of flight mass spectrometry. J Microbiol Methods 57:337–349

    Article  CAS  PubMed  Google Scholar 

  • Kim C-M, Kim S-J, Shin S-H (2012) Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus. J Microbiol 50:320–325. doi:10.1007/s12275-012-2056-y

    Article  CAS  PubMed  Google Scholar 

  • Kwon K-H, Yeom SH (2009) Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess Biosyst Eng 32(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Leblanc SK, Oates CW, Raivio TL (2011) Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. J Bacteriol 193:3367–3375. doi:10.1128/JB.01534-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Sharma V, Milase R, Mbhense N (2015) Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process. J Basic Microbiol. doi:10.1002/jobm.201500263

    Google Scholar 

  • Llamas MA, Sparrius M, Kloet R, Jiménez CR, Vandenbroucke-Grauls C, Bitter W (2006) The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188:1882–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus SR, Walker D, Maté MJ, Bonsor DA, James R, Moore GR, Kleanthous C (2006) Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. PNAS USA 103:12353–12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC (2008) Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Mol Cell 32:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes AC, Dunn H, Ferguson SSG (2012) Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 165:1717–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Ferbitz L, Deuerling E, Ban N (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15:204–212

    Article  CAS  PubMed  Google Scholar 

  • Matern Y, Barion B, Behrens-Kneip S (2010) PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 10:251. doi:10.1186/1471-2180-10-251

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Shimizu K (2015) Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresour Bioprocess 2:4

    Article  Google Scholar 

  • Mazzoli R, Fattori P, Lamberti C, Giuffrida MG, Zapponi M, Giunta C, Pessione E (2011) High isoelectric point sub-proteome analysis of Acinetobacter radioresistens S13 reveals envelope stress responses induced by aromatic compounds. Mol BioSyst 7:598–607

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  CAS  PubMed  Google Scholar 

  • Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Mooney RA, Schweimer K, Rösch P, Gottesman M, Landick R (2009) Two Structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol 391:341–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujacic M, Bader MW, Baneyx F (2004) Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK–DnaJ–GrpE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51:849–859

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Fuse H, Takimura O, Inoue H, Yamaoka Y (2000) Cloning and characterization of the iutA gene which encodes ferric aerobactin receptor from marine Vibrio species. Microbios 101:137–146

    CAS  PubMed  Google Scholar 

  • Nakamoto H, Fujita K, Ohtaki A et al (2014) Physical interaction between bacterial heat shock protein 90 (Hsp90) and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. JBC 289:6110–6119. doi:10.1074/jbc.M113.524801

    Article  CAS  Google Scholar 

  • Nešvera J, Rucká L, Pátek M (2015) Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv Appl Microbiol 93:107–160. doi:10.1016/bs.aambs.2015.06.002

    Article  PubMed  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  • Ong CL, Ulett GC, Mabbett AN et al (2008) Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 190:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Pawlik M-C, Hubert K, Joseph B, Claus H, Schoen C, Vogel U (2012) The zinc-responsive regulon of Neisseria meningitidis comprises 17 genes under control of a Zur element. J Bacteriol 194:6594–6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez A, Poza M, Fernández A et al (2012) Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 56:2084–2090

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessione E, Divari S, Griva E, Cavaletto M, Rossi GL, Gilardi G, Giunta C (1999) Phenol hydroxylase from Acinetobacter radioresistens is a multicomponent enzyme. Purification and characterization of the reductase moiety. Eur J Biochem 265:549–555

    Article  CAS  PubMed  Google Scholar 

  • Putrinš M, Tover A, Tegova R, Saks Ü, Kivisaar M (2007) Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology 153:1860–1871

    Article  PubMed  Google Scholar 

  • Reeves SA, Parsonage D, Nelson KJ, Poole LB (2011) Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 50:8970–8981. doi:10.1021/bi200935d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruangprasert A, Craven SH, Neidle EL, Momany C (2010) Full-length structures of BenM and two variants reveal different oligomerization schemes for LysR-type transcriptional regulators. J Mol Biol 404(4):568–586

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    Article  PubMed  Google Scholar 

  • Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4(9):2640–2652

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Ju J, Mitchell T, Haldenwang WG (2000) The Bacillus subtilis GTP binding protein Obg and regulators of the ςB stress response transcription factor cofractionate with ribosomes. J Bacteriol 182:2771–2777. doi:10.1128/JB.182.10.2771-2777.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura A, Ramos JL (2014) Toluene tolerance systems in Pseudomonas. In: Nojiri H, Tsuda M, Fukuda M, Kamagata Y (eds) Biodegradative Bacteria, vol 10. Springer, Japan, pp 227–248. doi:10.1007/978-4-431-54520-0_11

    Chapter  Google Scholar 

  • Shimizu K (2014) Regulation systems of bacteria such as E. coli in response to nutrient limitation and environmanental stresses. Metabolites 4:1–35

    Article  Google Scholar 

  • Versteeg S, Mogk A, Schumann W (1999) The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genet 261:582–588

    Article  CAS  PubMed  Google Scholar 

  • Vidakovics MLP, Paba J, Lamberti Y, Ricart CA, Valle de Sousa M, Rodriguez ME (2007) Profiling the Bordetella pertussis proteome during iron starvation. J Proteome Res 6:2518–2528. doi:10.1021/pr060681i

    Article  PubMed  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • Vita J, Marti S, Sanchez-Cespedes J (2007) Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59:1210–1215

    Article  Google Scholar 

  • Warnecke T (2012) Loss of the DnaK-DnaJ-GrpE chaperone system among the Aquificales. Mol Biol Evol 29:3485–3495. doi:10.1093/molbev/mss152

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Peng Z, Zhan Y, Wang J, Yan Y, Chen M, Lu MW, Ping S, Zhang W, Zhao Z, Li S, Takeo M, Lin M (2011) Novel regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpRType regulator MphR in Acinetobacter calcoaceticus. PLoS ONE 6:e17350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Yu H, Yan Y, Ping S, Lu W, Zhang W, Chen M, Lin M (2009) Benzoate catabolite repression of the phenol degradation in Acinetobacter calcoaceticus PHEA-2. Curr Microbiol 59:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Yan Y, Zhang W, Chen M, Lu W, Ping S, Lin M (2012) Comparative analysis of the complete genome of an Acinetobacter calcoaceticus strain adapted to a phenol-polluted environment. Res Microbiol 163(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang Y, Lee OO, Tian R et al (2013) Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses. Sci Rep 3:3180. doi:10.1038/srep03180

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Lin.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Additional information

Communicated by Jorge Membrillo-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOC 2070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J. Stress responses of Acinetobacter strain Y during phenol degradation. Arch Microbiol 199, 365–375 (2017). https://doi.org/10.1007/s00203-016-1310-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1310-9

Keywords

Navigation