Archives of Microbiology

, Volume 199, Issue 2, pp 247–257 | Cite as

A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei

  • Asha Mary Joseph
  • Robert Sonowal
  • Subramony MahadevanEmail author
Original Paper


The chb operon of Escherichia coli is involved in the utilization of chitooligosaccharides. While acquisition of two classes of mutations leading to altered regulation of the chb operon is necessary to confer the ability to utilize the glucose disaccharide cellobiose to wild-type strains of E. coli, in the closely related organism Shigella sonnei, Cel+ mutants arise relatively faster, requiring only a single mutational event. In Type I mutants, the insertion of IS600 at −21 leads to ChbR regulator-independent, constitutive expression of the operon. In Type II mutants, the insertion of IS2/600 within the distal binding site of the negative regulator NagC leads to ChbR-dependent cellobiose-inducible expression of the operon. These studies underscore the significance of strain background, specifically the diversity of transposable elements, in the evolution of novel metabolic functions. Constitutive expression of the chb operon also enables utilization of the aromatic β-glucosides arbutin and salicin, implying that the chb structural genes are inherently promiscuous.


chb operon Cellobiose Shigella sonnei IS elements 



This work was supported by an institutional grant from the Department of Biotechnology (DBT), Govt. of India, to the Indian Institute of Science and infrastructural support from the Department of Science and Technology (DST) under the FIST Program and the Universities Grants Commission (UGC), Govt. of India. AMJ thanks the Council for Scientific and Industrial Research (CSIR), Govt. of India, for a senior research fellowship.

Supplementary material

203_2016_1299_MOESM1_ESM.pdf (331 kb)
Supplementary material 1 (PDF 330 kb)


  1. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  2. Desai SK, Nandimath K, Mahadevan S (2010) Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Arch Microbiol 192:821–833CrossRefPubMedGoogle Scholar
  3. Kachroo AH, Kancherla AK, Singh NS, Varshney U, Mahadevan S (2007) Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose. Mol Microbiol 66:1382–1395PubMedGoogle Scholar
  4. Keyhani NO, Roseman S (1997) Wild-type Escherichia coli grows on the chitin disaccharide, N, N′-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci USA 94:14367–14371CrossRefPubMedPubMedCentralGoogle Scholar
  5. Keyhani NO, Bacia K, Roseman S (2000a) The transport/phosphorylation of N, N′-diacetylchitobiose in Escherichia coli. Characterization of phospho-IIB(Chb) and of a potential transition state analogue in the phosphotransfer reaction between the proteins IIA(Chb) AND IIB(Chb). J Biol Chem 275:33102–33109CrossRefPubMedGoogle Scholar
  6. Keyhani NO, Boudker O, Roseman S (2000b) Isolation and characterization of IIAChb, a soluble protein of the enzyme II complex required for the transport/phosphorylation of N, N′-diacetylchitobiose in Escherichia coli. J Biol Chem 275:33091–33101CrossRefPubMedGoogle Scholar
  7. Keyhani NO, Wang LX, Lee YC, Roseman S (2000c) The chitin disaccharide, N, N′-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem 275:33084–33090CrossRefPubMedGoogle Scholar
  8. Kharat AS, Mahadevan S (2000) Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. Microbiology 146(Pt 8):2039–2049CrossRefPubMedGoogle Scholar
  9. Kricker M, Hall BG (1984) Directed evolution of cellobiose utilization in Escherichia coli K12. Mol Biol Evol 1:171–182PubMedGoogle Scholar
  10. Lan R, Reeves PR (2002) Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect 4:1125–1132CrossRefPubMedGoogle Scholar
  11. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  12. Parker LL, Hall BG (1990a) Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics 124:473–482PubMedPubMedCentralGoogle Scholar
  13. Parker LL, Hall BG (1990b) Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics 124:455–471PubMedPubMedCentralGoogle Scholar
  14. Patrick WM, Quandt EM, Swartzlander DB, Matsumura I (2007) Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24:2716–2722CrossRefPubMedPubMedCentralGoogle Scholar
  15. Peng J, Yang J, Jin Q (2009) The molecular evolutionary history of Shigella spp. and enteroinvasive Escherichia coli. Infect Genet Evol 9:147–152CrossRefPubMedGoogle Scholar
  16. Plumbridge J, Pellegrini O (2004) Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52:437–449CrossRefPubMedGoogle Scholar
  17. Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  19. Shepherd JG, Wang L, Reeves PR (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun 68:6056–6061CrossRefPubMedPubMedCentralGoogle Scholar
  20. Singh J, Mukerji M, Mahadevan S (1995) Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter. Mol Microbiol 17:1085–1092CrossRefPubMedGoogle Scholar
  21. Singh NS, Das G, Seshadri A, Sangeetha R, Varshney U (2005) Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Nucl Acids Res 33:5591–5601CrossRefPubMedPubMedCentralGoogle Scholar
  22. Thompson J, Ruvinov SB, Freedberg DI, Hall BG (1999) Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 181:7339–7345PubMedPubMedCentralGoogle Scholar
  23. Verma SC, Mahadevan S (2012) The chbG gene of the chitobiose (chb) operon of Escherichia coli encodes a chitooligosaccharide deacetylase. J Bacteriol 194:4959–4971CrossRefPubMedPubMedCentralGoogle Scholar
  24. Woodcock DM et al (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acids Res 17:3469–3478CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wright BE (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650CrossRefPubMedGoogle Scholar
  26. Yang F et al (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucl Acids Res 33:6445–6458CrossRefPubMedPubMedCentralGoogle Scholar
  27. Zangoui P, Vashishtha K, Mahadevan S (2015) Evolution of aromatic beta-glucoside utilization by successive mutational steps in Escherichia coli. J Bacteriol 197:710–716CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Asha Mary Joseph
    • 1
  • Robert Sonowal
    • 1
    • 2
  • Subramony Mahadevan
    • 1
    Email author
  1. 1.Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PathologyEmory University School of MedicineAtlantaUSA

Personalised recommendations