Archives of Microbiology

, Volume 199, Issue 2, pp 385–390 | Cite as

The thnR gene is a negative transcription regulator of the thurincin H genetic cassette in Bacillus thuringiensis subsp. morrisoni

  • Luz E. Casados-Vázquez
  • Dennis K. Bideshi
  • José E. Barboza-CoronaEmail author
Short Communication


Thurincin H is a bacteriocin synthesized by some strains of Bacillus thuringiensis. In this study, the thurincin H genetic cassette, which contains ten genes, from a Mexican strain of B. thuringiensis subsp. morrisoni (Btm) was cloned and sequenced. To study the function of the thnR gene component in the cassette, we generated various constructs with or without thnR for expression in Btm. All transformants harboring thnR in recombinant plasmids showed a decrease of ~15 to ~90 % in inhibitory activity against the target strain, Bacillus cereus 183. Importantly, a ~90 % reduction in inhibition occurred with Btm harboring a construct containing thnR alone, suggesting that ThnR, indeed, functions as a negative transcription regulator of the thurincin H cassette. Based on sequence homology, ThnR was classified as a member of the YtrA subfamily of the GntR superfamily of transcriptional regulators.


Bacillus thuringiensis subsp. morrisoni Thurincin H Bacteriocin thnR transcriptional regulator 



This work was partially supported by Grants 004/2014 and 015/2015 (Academic Excellence) from the University of Guanajuato and 103/2016 UG from the Secretary of Innovation, Science and Higher Education of Guanajuato, México. L. E. Casados-Vázquez is a Young Associate Researcher supported by Grant 2069, “Cátedra CONACyT,” México.


  1. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603PubMedGoogle Scholar
  2. Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126CrossRefPubMedGoogle Scholar
  3. Cordeiro JX, Laia ML, Goncalves JF, Bergamasco VB, Lemos M (2011) Bacillus thuringiensis mutant increase activity against Spodoptera frugiperda larvae. Aust J Basic Appl Sci 5(3):521–531Google Scholar
  4. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105CrossRefPubMedGoogle Scholar
  6. De la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640CrossRefPubMedGoogle Scholar
  7. De la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013) Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can J Microbiol 59:515–522CrossRefPubMedGoogle Scholar
  8. Flühe L, Marahiel MA (2013) Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol 17:605–612CrossRefPubMedGoogle Scholar
  9. Hillerich B, Westpheling J (2006) A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188:7477–7487CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lee H, Churey JJ, Worobo RW (2009) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299:205–213CrossRefPubMedGoogle Scholar
  11. Lereclus D, Arantes O, Chaufaux J, Lecadet MM (1989) Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 60:211–217Google Scholar
  12. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LG, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39(suppl 1):D225–D229CrossRefPubMedGoogle Scholar
  13. Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C (2010) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genom 11:679CrossRefGoogle Scholar
  14. O’Shea EF, O’Connor PM, Raftis EJ, O’Toole PW, Stanton C, Cotter PD, Ross RP, Hill C (2011) Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 193:6973–6982CrossRefPubMedPubMedCentralGoogle Scholar
  15. Palma L, Munoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 6:3298–3325Google Scholar
  16. Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Sci USA 107:9352–9357CrossRefGoogle Scholar
  17. Rigali S, Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515CrossRefPubMedGoogle Scholar
  18. Salzberg LI, Luo Y, Hachmann A-B, Mascher T, Helman J (2011) The Bacillus subtilis GntR family repressor YtrA responds to cell wall antibiotics. J Bacteriol 193:5793–5801CrossRefPubMedPubMedCentralGoogle Scholar
  19. Vindal V, Suma K, Ranjan A (2007) GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC Genom 8:289CrossRefGoogle Scholar
  20. Wang G, Manns DC, Guron GKP, Churey JJ, Worobo RW (2014) Homologous expression of recombinant and native thurincin H in an engineered natural producer. J Dairy Sci 97:4120–4126CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Graduate Program in Biosciences, Life Science DivisionUniversity of Guanajuato Campus Irapuato-SalamancaIrapuatoMexico
  2. 2.Food Department, Life Science DivisionUniversity of Guanajuato Campus Irapuato-SalamancaIrapuatoMexico
  3. 3.Department of Natural and Mathematical SciencesCalifornia Baptist UniversityRiversideUSA
  4. 4.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations