Advertisement

Archives of Microbiology

, Volume 199, Issue 2, pp 223–230 | Cite as

Genomic and transcriptome analysis of triclosan response of a multidrug-resistant Acinetobacter baumannii strain, MDR-ZJ06

  • Borui Pi
  • Dongliang Yu
  • Xiaoting Hua
  • Zhi Ruan
  • Yunsong YuEmail author
Original Paper

Abstract

During the last decade, an increasing amount of attention has focused on the potential threat of triclosan to both the human body and environmental ecology. However, the role of triclosan in the development of drug resistance and cross resistance is still in dispute ascribed to largely unknown of triclosan resistance mechanism. In this work, Acinetobacter baumannii MDR-ZJ06, a multidrug-resistant strain, was induced by triclosan, and the genomic variation and transcriptional levels were investigated, respectively. The comparative transcriptomic analysis found that several general protective mechanisms were enhanced under the triclosan condition, including responses to reactive oxygen species and cell membrane damage. Meanwhile, all of the detected fifteen single nucleotide polymorphisms were not directly associated triclosan tolerance. In summary, this work revealed the crucial role of the general stress response in A. baumannii under a triclosan stress condition, which informs a more comprehensive understanding of the role of triclosan in the spread of drug-resistant bacteria.

Keywords

Acinetobacter baumannii Reactive oxygen species FabI RNA-seq Multidrug resistance 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81201327).

Compliance with ethical standards

Conflict of interest

None declared.

Supplementary material

203_2016_1295_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)

References

  1. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res Int 19:1044–1065. doi: 10.1007/s11356-011-0632-z CrossRefPubMedGoogle Scholar
  3. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi: 10.1038/nrmicro3380 CrossRefPubMedGoogle Scholar
  4. Chen Y, Pi B, Zhou H, Yu Y, Li L (2009) Triclosan resistance in clinical isolates of Acinetobacter baumannii. J Med Microbiol 58:1086–1091. doi: 10.1099/jmm.0.008524-0 CrossRefPubMedGoogle Scholar
  5. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562. doi: 10.1128/AAC.00732-07 CrossRefPubMedGoogle Scholar
  6. Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157:306–314. doi: 10.1016/j.resmic.2005.12.003 CrossRefPubMedGoogle Scholar
  7. Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH (2011) Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genom 12:126. doi: 10.1186/1471-2164-12-126 CrossRefGoogle Scholar
  8. Escalada MG, Russell AD, Maillard JY, Ochs D (2005) Triclosan-bacteria interactions: single or multiple target sites? Lett Appl Microbiol 41:476–481. doi: 10.1111/j.1472-765X.2005.01790.x CrossRefPubMedGoogle Scholar
  9. Fernando DM, Xu W, Loewen PC, Zhanel GG, Kumar A (2014) Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics. Antimicrob Agents Chemother 58:6424–6431. doi: 10.1128/AAC.03074-14 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fiester SE, Actis LA (2013) Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 8:353–365. doi: 10.2217/fmb.12.150 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Giuliano CA, Rybak MJ (2015) Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review. Pharmacotherapy 35:328–336. doi: 10.1002/phar.1553 CrossRefPubMedGoogle Scholar
  12. Hua X, Chen Q, Li X, Yu Y (2014) Global transcriptional response of Acinetobacter baumannii to a subinhibitory concentration of tigecycline. Int J Antimicrob Agents 44:337–344. doi: 10.1016/j.ijantimicag.2014.06.015 CrossRefPubMedGoogle Scholar
  13. Jara LM, Cortes P, Bou G, Barbe J, Aranda J (2015) Differential roles of antimicrobials in the acquisition of drug resistance through activation of the SOS response in Acinetobacter baumannii. Antimicrob Agents Chemother 59:4318–4320. doi: 10.1128/AAC.04918-14 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi: 10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339:1213–1216. doi: 10.1126/science.1232688 CrossRefPubMedGoogle Scholar
  16. Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339:1210–1213. doi: 10.1126/science.1232751 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447. doi: 10.1093/nar/gkn656 CrossRefPubMedGoogle Scholar
  18. Magnet S, Courvalin P, Lambert T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380. doi: 10.1128/AAC.45.12.3375-3380.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. McBain AJ, Ledder RG, Sreenivasan P, Gilbert P (2004) Selection for high-level resistance by chronic triclosan exposure is not universal. J Antimicrob Chemother 53:772–777. doi: 10.1093/jac/dkh168 CrossRefPubMedGoogle Scholar
  20. McClure R et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140. doi: 10.1093/nar/gkt444 CrossRefPubMedPubMedCentralGoogle Scholar
  21. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532. doi: 10.1038/28970 CrossRefPubMedGoogle Scholar
  22. Mussi MA, Relling VM, Limansky AS, Viale AM (2007) CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for l-ornithine uptake. FEBS Lett 581:5573–5578. doi: 10.1016/j.febslet.2007.10.063 CrossRefPubMedGoogle Scholar
  23. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582. doi: 10.1128/CMR.00058-07 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484. doi: 10.1128/AAC.01464-06 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279. doi: 10.1093/nar/gkl925 CrossRefPubMedGoogle Scholar
  26. Siroy A et al (2006) Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 5:3385–3398. doi: 10.1021/pr060372s CrossRefPubMedGoogle Scholar
  27. Soares NC et al (2010) Associating growth-phase-related changes in the proteome of Acinetobacter baumannii with increased resistance to oxidative stress. J Proteome Res 9:1951–1964. doi: 10.1021/pr901116r CrossRefPubMedGoogle Scholar
  28. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637CrossRefPubMedGoogle Scholar
  29. Yazdankhah SP et al (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90. doi: 10.1089/mdr.2006.12.83 CrossRefPubMedGoogle Scholar
  30. Ye J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297. doi: 10.1093/nar/gkl031 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yueh MF et al (2014) The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci USA 111:17200–17205. doi: 10.1073/pnas.1419119111 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou H et al (2011) Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob Agents Chemother 55:4506–4512. doi: 10.1128/AAC.01134-10 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Borui Pi
    • 1
  • Dongliang Yu
    • 2
  • Xiaoting Hua
    • 1
  • Zhi Ruan
    • 1
  • Yunsong Yu
    • 1
    Email author
  1. 1.Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of MedicineZhejiang UniversityHangzhouChina
  2. 2.College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina

Personalised recommendations