Advertisement

Archives of Microbiology

, Volume 199, Issue 2, pp 377–383 | Cite as

Candida xinjiangensis sp. nov., a new anamorphic yeast species isolated from Scolytus scheryrewi Semenov in China

  • Xiao-feng Zhu
  • Dian-peng Zhang
  • Sen YangEmail author
  • Qing-wen ZhangEmail author
Short Communication

Abstract

Three yeast strains designated as S44, XF1 and XF2, respectively, were isolated from Scolytus scheryrewi Semenov of apricot tree in Shule County, Xinjiang, China, and were demonstrated to be a new member of the genus Candida by sequence comparisons of 26S rRNA gene D1/D2 domain and internal transcribed spacer (ITS) region. BLASTn alignments on NCBI showed that the similarity of 26S rRNA gene sequences of S44 (type strain) to all sequences of other Candida yeasts was very low (≦93 %). The phylogenetic tree based on the 26S rRNA gene D1/D2 domain and ITS region sequences revealed that the strain S44 is closely related to C. blattae, C. dosseyi, C. pruni, C. asparagi, C. fructus and C. musae. However, the strain S44 is distinguished from these Candida species by the physiological characteristics. Moreover, the strain S44 formed typical pseudohyphae when grown on cornmeal agar at 25 °C for 7 days, but did not form ascospores in sporulation medium for 3–4 weeks. Therefore, the name Candida xinjiangensis is proposed for the novel species, with S44 (=KCTCT27747) as the type strain.

Keywords

Apricot tree Candida xinjiangensis sp. nov. China Scolytus scheryrewi 

Notes

Acknowledgments

The authors give thanks to Dr. Jianping-Wang for reviewing the manuscript. The work was supported by the Xinjiang Uygur Autonomous Region Nonprofit Research Institutes’ fundamental research Project fund (No. KY2015062) and the grant of the Beijing Municipal Science and technology Project (No. Z141100002614006).

Supplementary material

203_2016_1294_MOESM1_ESM.tif (1.5 mb)
Supplementary Fig. 1 Phylogenetic relationships between Candida xinjiangensis sp. nov. S44T and members of the Candida clade inferred using neighbor-joining analysis (Kimura two-parameter mode) of combined sequences of the D1/D2 domains of the 26S rRNA gene. Kodamaea anthophila represents the outgroup. Scale represents 0.02 nucleotide substitutions per site. Bootstrap values (%) based on 1000 replications are given on each node. Bar means 1 % sequence divergence. Reference sequences were retrieved from GenBank or CBS under the accession numbers indicated in parentheses. (TIFF 1566 kb)
203_2016_1294_MOESM2_ESM.tif (1.3 mb)
Supplementary Fig. 2 Phylogenetic relationships between Candida xinjiangensis sp. nov. S44T and members of the Candida clade inferred using neighbor-joining analysis (Kimura two-parameter mode) of combined sequences of the ITS regions. Kodamaea anthophila represents the outgroup. Scale represents 0.02 nucleotide substitutions per site. Bootstrap values (%) based on 1000 replications are given on each node. Bar means 1 % sequence divergence. Reference sequences were retrieved from GenBank or CBS under the accession numbers indicated in parentheses. (TIFF 1342 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 5:403–410. doi: 10.1006/jmbi.1990.9999 CrossRefGoogle Scholar
  2. Douglas H, Bouchard P, Anderson RS, Tonnancour PD, Vigneault R, Webster RP (2013) New Curculionoidea (Coleoptera) records for Canada. Zookeys 309:13–48. doi: 10.3897/zookeys.309.4667 CrossRefGoogle Scholar
  3. Droby S, Wisniewski ME, Cohen L, Weiss B, Touitou D, Eilam Y, Chalutz E (1997) Influence of CaCl2 on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology 87:310–315. doi: 10.1094/phyto.1997.87.3.310 CrossRefPubMedGoogle Scholar
  4. Jacobi WR, Koski RD, Harrington TC, Witcosky JJ (2007) Association of Ophiostoma novo-ulmi with Scolytus schevyrewi (Scolytidae) in Colorado. Plant Dis 91:245–247. doi: 10.1094/pdis-91-3-0245 CrossRefGoogle Scholar
  5. Jacobi WR, Koski RD, Negron JF (2013) Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi. For Pathol 43:232–237. doi: 10.1111/efp.12023 Google Scholar
  6. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/bf01731581 CrossRefPubMedGoogle Scholar
  7. Kurtzman CP (2001) Six new anamorphic ascomycetous yeasts near Candida tanzawaensis. FEMS Yeast Res 1:11–185. doi: 10.1111/j.1567-1364.2001.tb00032.x Google Scholar
  8. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371. doi: 10.1023/A:1001761008817 CrossRefPubMedGoogle Scholar
  9. Lachance M-A, Bowles JM (2002a) Metschnikowia arizonensis and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Res 2:81–86. doi: 10.1111/j.1567-1364.2002.tb00072.x PubMedGoogle Scholar
  10. Lachance M-A, Bowles JM (2002b) Metschnikowia similis sp. nov. and Metschnikowia colocasiae sp. nov., two ascomycetous yeasts isolated from Conotelus spp. (Coleoptera: Nitidulidae) in Costa Rica. Stud Mycol 50:69–76. doi: 10.1007/s10482-013-0106-z Google Scholar
  11. Lachance M-A, Bowles JM, Kwon S, Marinoni G, Starmer WT, Janzen DH (2001a) Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Can J Microbiol 47:103–109. doi: 10.1139/w00-130 CrossRefPubMedGoogle Scholar
  12. Lachance M-A, Starmer WT, Rosa CA, Bowels JM, Barker JS, Janzen DH (2001b) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8. doi: 10.1016/s1567-1356(00)00003-9 CrossRefPubMedGoogle Scholar
  13. Lachance M-A, Ewing CP, Bowles JM, Starmer WT (2005) Metschnikowia hamaruensis sp. nov., Metschnikowia kamarouana sp. nov., and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawiian nitidulid beetles. Int J Syst Evol Microbiol 55:1369–1377. doi: 10.1099/ijs.0.63615-0 CrossRefPubMedGoogle Scholar
  14. Langor DW, DeHaas LJ, Foottit RG (2009) Diversity of non-native terrestrial arthropods on woody plants in Canada. Biol Invasions 11:5–19. doi: 10.1007/978-1-4020-9680-8-2 CrossRefGoogle Scholar
  15. Lee JC, Negróón JF, McElwey SJ, Williams L, Witcosky JJ, Popp JB, Seybold SJ (2011) Biology of the invasive banded elm bark beetle (Coleoptera: Scolytidae) in the Western United States. Ann Entomol Soc Am 104:705–717. doi: 10.1603/an10150 CrossRefGoogle Scholar
  16. Li H, Zhu XF, Abudukeyim X, Tuersunnayi FY, Yang S (2009) Occurrence and damage of Scolytus seulensis in Kashi. Plant Prot 35:135–138. doi: 10.3969/j.issn.0529-1542.2009.06.030 Google Scholar
  17. Miller MW, Phaff HJ (1998) Metschnikowia kamienski. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdan, pp 256–267CrossRefGoogle Scholar
  18. Negrón JF, Witcosky JJ, Cain RJ, LaBonte JR, Duerr DA II, McElwey SJ, Lee JC, Seybold SJ (2005) The banded elm bark beetle: a new threat to elms in North America. Am Entomol 51:84–94. doi: 10.1093/ae/51.2.84 CrossRefGoogle Scholar
  19. Nguyen NH, Suh S-O, Erbil CK, Blackwell M (2006) Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110:346–356. doi: 10.1016/j.mycres.2005.11.010 CrossRefPubMedGoogle Scholar
  20. Nguyen NH, Suh S-O, Blackwell M (2007) Five novel Candida species in insect-associated yeast clades isolated form Neuroptera and other insects. Mycologia 99:842–858. doi: 10.3852/mycologia.99.6.842 CrossRefPubMedGoogle Scholar
  21. Pimentel MR, Antonini Y, Martins RP, Lachance MA, Rosa CA (2005) Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic rain forest of Brazil. FEMS Yeast Res 5:875–879. doi: 10.1016/j.femsyr.2005.03.006 CrossRefPubMedGoogle Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 CrossRefPubMedPubMedCentralGoogle Scholar
  24. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322. doi: 10.1016/b978-0-12-372180-8.50042-1 Google Scholar
  25. Wood SL, Bright DE (1992) A Catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: taxonomic index, volume A. Great Basin Nat Mem 13:1–833Google Scholar
  26. Yarrow D (1998) Methods for the isolation and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4TH edn. Elsevier, Amsterdam, pp 77–100. doi: 10.1016/b978-044481312-1/50014-9 CrossRefGoogle Scholar
  27. Yin HF, Huang FS, Li ZL (1984) Economic insect fauna of China: Coleoptera: Scolytidae, vol 29. Science Press, BeijingGoogle Scholar
  28. Zhang DP, Lu CG, Zhang TT, Spadaro D, Liu DW, Liu WC (2014) Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches. Arch Microbiol 196:525–530. doi: 10.1007/s00203-014-0999-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
  2. 2.Institute of Plant ProtectionXinjiang Academy of Agricultural SciencesUrumqiChina
  3. 3.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina

Personalised recommendations