Skip to main content
Log in

Changes in the membrane fatty acid composition in Anoxybacillus flavithermus subsp. yunnanensis E13T as response to solvent stress

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Anoxybacillus flavithermus subsp. yunnanensis is currently the first species of strictly thermophilic bacteria that is able to tolerate a broad range of solvents. Unlike most of solvent-tolerant mesophilic bacteria, the bacterium does not synthesize unsaturated fatty acids. Our results revealed that in growing cells of A. flavithermus subsp. yunnanensis E13T, ethanol and toluene resulted in an increase in straight-chain fatty acids, mainly C16:0, leading to a more rigid membrane. Moreover, the increase in straight-chain fatty acids caused by ethanol was much higher than that of toluene. High temperature had little effect on the fatty acid composition by itself, whereas the combined conditions of high temperature and ethanol caused the dramatic increase in straight-chain fatty acids (mainly C16:0), that was balanced by decreasing branched fatty acids. The increase was also temperature dependent. The proportion of C16:0 further increased above 60 °C. No similar evidence was found in four other species of Anoxybacillus. The results suggested that A. flavithermus subsp. yunnanesis seems to develop a different response to solvents compared to its mesophilic counterparts, which consist of an increase in the saturated straight/branched ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microb 53:2854–2861

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Burdette DS, Jung SH, Shen GJ, Hollingsworth RI, Zeikus JG (2002) Physiological function of alcohol dehydrogenases and long-chain C (30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68:1914–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Liu Y, Lei Y, Gao Y, Han F, Xiao YZ, Peng H (2011) A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. FEMS Microbiol Lett 320:72–78. doi:10.1111/j.1574-6968.2011.02294

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, da Fonseca MMR, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222. doi:10.1002/jemt.20061

    Article  PubMed  Google Scholar 

  • de Carvalho CC, Parreno-Marchante B, Neumann G, da Fonseca MM, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388. doi:10.1007/s00253-004-1750-z

    Article  CAS  PubMed  Google Scholar 

  • Duldhardt I, Gaebel J, Chrzanowski L, Nijenhuis I, Härtig C, Schauer F, Heipieper HJ (2010) Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition. Microb Biotechnol 3:201–209. doi:10.1111/j.1751-7915.2009.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JCN, Svenson CJ, Nakasugi K, Leong CTC, Bowman JP, Chen B, Neilan DRGBA, Rogers PL (2006) Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10:363–372. doi:10.1007/s00792-006-0507-2

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Dai J, Peng H, Liu Y, Xu T (2011) Isolation and characterization of a novel organic solvent-tolerant Anoxybacillus sp. PGDY12, a thermophilic Gram-positive bacterium. J Appl Microbiol 110:472–478. doi:10.1111/j.1365-2672.2010.04903

    Article  CAS  PubMed  Google Scholar 

  • Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170. doi:10.1002/bit.21536

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huffer S, Clark ME, Ning JC, Blanch HW, Clark DS (2011) Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Appl Environ Microbiol 77:6400–6408. doi:10.1128/AEM.00694-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Psuedomonas thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Kongpol A, Kato J, Vangnai AS (2008) Isolation and characterization of Deinococcus geothermalis T27, a slightly thermophilic and organic solvent-tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate. FEMS Microbiol Lett 286:227–235. doi:10.1111/j.1574-6968.2008.01273

    Article  CAS  PubMed  Google Scholar 

  • Kongpol A, Pongtharangkul T, Kato J, Honda K, Ohtake H, Vangnai AS (2009) Characterization of an organic-solvent-tolerant Brevibacillus agri strain 13 able to stabilize solvent/water emulsion. FEMS Microbiol Lett 297:225–233. doi:10.1111/j.1574-6968.2009.01684

    Article  CAS  PubMed  Google Scholar 

  • Loffler C, Eberlein C, Mausezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75. doi:10.1111/j.1574-6968.2010.01993

    Article  PubMed  Google Scholar 

  • Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW (2005) Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176. doi:10.1128/AEM.71.9.5171-5176.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepi M, Heipieper HJ, Fischer J, Ruta M, Volterrani M, Focardi SE (2008) Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 12:343–349. doi:10.1007/s00792-008-0147-9

    Article  CAS  PubMed  Google Scholar 

  • Pini CV, Bernal P, Godoy P, Ramos JL, Segura A (2009) Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E. Microb Biotechnol 2:253–261. doi:10.1111/j.1751-7915.2009.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi:10.1146/annurev.micro.56.012302.161038

    Article  CAS  PubMed  Google Scholar 

  • Rani KS, Seenayya G (1999) High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol 15:173–178

    Article  Google Scholar 

  • Teixeira H, Goncalves MG, Rozes N, Ramos A, San Romao MV (2002) Lactobacillus acid accumulation in the plasma membrane of Oenococcus oeni: a response to ethanol stress? Microb Ecol 43:146–153

    Article  CAS  PubMed  Google Scholar 

  • Timmons MD, Knutson BL, Nokes SE, Strobel HJ, Lynn BC (2009) Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 82:929–939. doi:10.1007/s00253-009-1891-1

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29:442–452. doi:10.1016/j.biotechadv.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143. doi:10.1111/j.1574-6968.2006.00502

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432. doi:10.1007/s00253-006-0689-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang CM, Huang XW, Pan WZ, Zhang J, Wei KB, Klenk HP, Tang SK, Li WJ, Zhang KQ (2011) Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. Int J Syst Evol Microbiol 61:118–122. doi:10.1099/ijs.0.020834-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Peng.

Additional information

Communicated by Friedrich Widdel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Yi, L., Zhang, X. et al. Changes in the membrane fatty acid composition in Anoxybacillus flavithermus subsp. yunnanensis E13T as response to solvent stress. Arch Microbiol 199, 1–8 (2017). https://doi.org/10.1007/s00203-016-1266-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1266-9

Keywords

Navigation