Archives of Microbiology

, Volume 198, Issue 10, pp 973–986 | Cite as

Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features

Original Paper

Abstract

Members of the recently proposed genus Parasynechococcus (Cyanobacteria) are extremely abundant throughout the global ocean and contribute significantly to global primary productivity. However, the taxonomy of these organisms remains poorly characterized. The aim of this study was to propose a new taxonomic framework for Parasynechococcus based on a genomic taxonomy approach that incorporates genomic, physiological and ecological data. Through in silico DNA–DNA hybridization, average amino acid identity, dinucleotide signatures and phylogenetic reconstruction, a total of 15 species of Parasynechococcus could be delineated. Each species was then described on the basis of their gene content, light and nutrient utilization strategies, geographical distribution patterns throughout the oceans and response to environmental parameters.

Keywords

Parasynechococcus Genomic taxonomy Cyanobacteria Pan-genome 

Supplementary material

203_2016_1256_MOESM1_ESM.svg (1.5 mb)
Figure S1Heatmap displaying the relative abundance of 15 Parasynechococcus species across 191 Tara Oceans metagenomes (SVG 1531 kb)
203_2016_1256_MOESM2_ESM.tsv (2 kb)
Table S1Dinucleotide signature distances and in silico DNA–DNA hybridization values for the 15 Parasynechococcus genomes (TSV 3 kb)
203_2016_1256_MOESM3_ESM.tsv (439 kb)
Table S2List of orthologous groups shared by at least two of the 15 Parasynechococcus genomes. Obtained from (Coutinho et al. 2016) (TSV 440 kb)
203_2016_1256_MOESM4_ESM.tsv (450 kb)
Table S3List of orthologous groups that are exclusive to a single of the 15 Parasynechococcus genomes. Obtained from (Coutinho et al. 2016) (TSV 451 kb)
203_2016_1256_MOESM5_ESM.tsv (1 kb)
Table S4Spearman correlation scores and associated p values between sample positioning along PC1 and PC2 and measured environmental parameters (TSV 2 kb)

References

  1. Al-Saari N, Gao F, Rohul AAKM, Sato K, Sato K, Mino S, Suda W, Oshima K, Hattori M, Ohkuma M, Meirelles PM, Thompson FL, Thompson C, Filho GMA, Gomez-Gil B, Sawabe T, Sawabe T (2015) Advanced microbial taxonomy combined with genome-based-approaches reveals that Vibrio astriarenae sp. Nov., an agarolytic marine bacterium, forms a new clade in Vibrionaceae. PLoS One 10:1–17CrossRefGoogle Scholar
  2. Appolinario LR, Tschoeke D, Venas T, Campeão ME, Amaral G, Leomil L, Oliveira L, Otsuki RK, Swings J, Thompson FL, Thompson CC (2016) Description of Endozoicomonas arenosclerae sp nov using a genomic taxonomy approach. Antonie van Leeuwenhoek J Microb 109(3):431–438CrossRefGoogle Scholar
  3. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF (2015) Unusual biology across a group comprising more than 15 % of domain Bacteria. Nature 523:208–211CrossRefPubMedGoogle Scholar
  4. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167CrossRefPubMedGoogle Scholar
  5. Coutinho FH, Meirelles PM, Moreira APB, Paranhos RP, Dutilh BE, Thompson FL (2015) Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ 3:e1008CrossRefPubMedPubMedCentralGoogle Scholar
  6. Coutinho F, Tschoeke DA, Thompson F, Thomson C (2016) Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 4:e1522CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, Karl D, Li W, Lomas M, Veneziano D, Vera C, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Nat Acad Sci 110:9824–9829CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gaget V, Welker M, Rippka R, de Marsac NT (2015) A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov. Syst Appl Microbiol 38:141–158CrossRefPubMedGoogle Scholar
  9. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739CrossRefPubMedGoogle Scholar
  10. Hahn MW, Jezberova J, Koll U, Saueressig-Beck T, Schmidt J (2016) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J. doi:10.1038/ismej.2015.237. PubMedCentralGoogle Scholar
  11. Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, Andersson AF (2015) Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biology 16(279):1–18Google Scholar
  12. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590CrossRefPubMedGoogle Scholar
  13. Karlin S, Mrazek J, Campbel AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913PubMedPubMedCentralGoogle Scholar
  14. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedGoogle Scholar
  15. Komárek J (2016) Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764(1):259–270. doi:10.1007/s10750-015-2242-0 CrossRefGoogle Scholar
  16. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335Google Scholar
  17. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264CrossRefPubMedPubMedCentralGoogle Scholar
  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  19. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT (2011) Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 108:7200–7205CrossRefPubMedPubMedCentralGoogle Scholar
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  21. Micallef ML, D’Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC (2015) Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genom 21:1–12CrossRefGoogle Scholar
  22. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042CrossRefPubMedGoogle Scholar
  23. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Nat Acad Sci USA 110:1053–1058CrossRefPubMedGoogle Scholar
  24. Six C, Finkel ZV, Irwin AJ, Campbell DA (2007a) Light variability illuminates niche-partitioning among marine Picocyanobacteria. PLoS One 2:e1341CrossRefPubMedPubMedCentralGoogle Scholar
  25. Six C, Thomas J-C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007b) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-castillo FM, Costea PI, Cruaud C, Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C (2015) Structure and function of the global ocean microbiome. Science 348:1–10CrossRefGoogle Scholar
  27. Thompson CC, Silva GG, Vieira NM, Edwards R, Vicente AC, Thompson FL (2013) Genomic taxonomy of the genus prochlorococcus. Microb Ecol 66:752–762CrossRefPubMedGoogle Scholar
  28. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wang H, Fewer DP, Sivonen K (2011) Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS One 6Google Scholar
  30. Zangenah S, Abbasi N, Andersson AF, Bergman P (2016) Whole genome sequencing identifies a novel species of the genus Capnocytophaga isolated from dog and cat bite wounds in humans. Sci Rep 6:22919CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto de Biologia (IB)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life SciencesRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.Theoretical Biology and BioinformaticsUtrecht UniversityUtrechtThe Netherlands
  4. 4.COPPE, SAGEUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  5. 5.CCS, IB, BIOMAR, Laboratório de MicrobiologiaCidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations