Skip to main content

Advertisement

Log in

Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The anticandidal potential of Geraniol (Ger) against Candida albicans has already been established. The present study reveals deeper insights into the mechanisms of action of Ger. We observed that the repertoire of antifungal activity was not only limited to C. albicans and its clinical isolates but also against non-albicans species of Candida. The membrane tampering effect was visualized through transmission electron micrographs, depleted ergosterol levels and altered plasma membrane ATPase activity. Ger also affects cell wall as revealed by spot assays with cell wall-perturbing agents and scanning electron micrographs. Functional calcineurin pathway seems to be indispensable for the antifungal effect of Ger as calcineurin signaling mutant was hypersensitive to Ger while calcineurin overexpressing strain remained resistant. Ger also causes mitochondrial dysfunction, impaired iron homeostasis and genotoxicity. Furthermore, Ger inhibits both virulence attributes of hyphal morphogenesis and biofilm formation. Taken together, our results suggest that Ger is potential antifungal agent that warrants further investigation in clinical applications so that it could be competently employed in therapeutic strategies to treat Candida infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman FH, Alaniz NM, Saleh MA (2013) Nematicidal activity of terpenoids. J Environ Sci Health B 48:16–22

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Monge R, Navarro-Garcia F, Roman E et al (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 23:351–361

    Article  Google Scholar 

  • Ansari MA, Fatima Z, Hameed S (2014) Sesamol: a natural phenolic compound with promising anticandidal potential. J Pathog 895193:1–12

    Article  Google Scholar 

  • Arthington-Skaggs BA, Jradi H, Desai T, Morrison CJ (1999) Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol 37:3332–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J (2003) Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell 2:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breivik ON, Owades JL (1957) Spectrophotometric semimicrodetermination of ergosterol in yeast. J Agric Food Chem 5:360–363

    Article  CAS  Google Scholar 

  • Chauhan NM, Raut JS, Karuppayil SM (2010) A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses 54:e697–e703

    Article  Google Scholar 

  • Chen HF, Lan CY (2015) Role of SFP1 in the regulation of Candida albicans Biofilm Formation. PLoS ONE 10:e0129903

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Brand A, Morrison EL (2011) Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell 10:803–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Konieczka JH, Springer DJ (2012) Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3 (Bethesda) 2:675–691

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J (2002) Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis D Jr, Edwards JE, Mitchell AP, Ibrahim AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Bona A, Parra-Giraldo CM, Hernaez ML (2015) Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 3919:30043–30049

    Google Scholar 

  • Guo H, Xie SM, Li SX, Song YJ, Lv XL, Zhang H (2014) Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway. J Med Microbiol 63:988–996

    Article  CAS  PubMed  Google Scholar 

  • Hameed S, Fatima Zeeshan (2013) Novel regulatory mechanisms of pathogenicity and virulence to combat MDR in Candida albicans. Int J Microbiol 2013:240209. doi:10.1155/2013/240209

    Article  PubMed  PubMed Central  Google Scholar 

  • Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R (2011) Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PLoS ONE 6:e18684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juvvadi PR, Lamoth F, Steinbach WJ (2014) Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 28:56–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Ahmad I (2012) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621

    Article  CAS  PubMed  Google Scholar 

  • Khodavandi A, Alizadeh F, Vanda NA, Karimi G, Chong PP (2014) Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans. Pharm Biol 52:1505–1509

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dhamgaye S, Maurya IK, Singh A, SharmaM Prasad R (2014) Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans. Antimicrob Agents Chemother 58:167–175

    Article  PubMed  PubMed Central  Google Scholar 

  • LaFayette SL, Collins C, Zaas AK (2010) PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6:e1001069

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite MC, de Brito Bezerra AP, de Sousa JP, de Oliveira Lima E (2015) Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Med Mycol 53:275–284

    Article  PubMed  Google Scholar 

  • Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H (2015a) Diorcinol D exerts fungicidal action against Candida albicans through cytoplasm membrane destruction and ROS accumulation. PLoS ONE 10:e0128693

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chang W, Zhang M, Ying Z, Lou H (2015b) Natural product solasodine-3-O-β-D-glucopyranoside inhibits the virulence factors of Candida albicans. FEMS Yeast Res 15:1–6

    Article  Google Scholar 

  • Manavathu EK, Dimmock JR, Vashishtha SC, Chandrasekar PH (1999) Proton-pumping-ATPase-targeted antifungal activity of a novel conjugated styryl ketone. Antimicrob Agents Chemother 43:2950–2959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor N, Amin M, Khan LA (2002) Effect of phosphocreatine on H + extrusion, pHi and dimorphism in Candida albicans. Int J Exp Biol 40:785–790

    CAS  Google Scholar 

  • Marcos-Arias C, Eraso E, Madariaga L, Quindos G (2011) In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med 11:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama N et al (2008) Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice. Biol Pharm Bull 31:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Mishra NN, Prasad T, Sharma N et al (2007) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54:201–235

    Article  CAS  PubMed  Google Scholar 

  • Misra LN, Wouatsa NA, Kumar S, Venkatesh Kumar R, Tchoumbougnang F (2013) Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. J Ethnopharmacol 148:74–80

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro CA, Selvaggini S, de Bruijn I (2007) The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Committee for Clinical and Laboratory Standards (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard M27-A3, National Committee for Clinical and Laboratory Standards, Wayne, vol 28, p 14

  • Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50:3597–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad T, Hameed S, Manoharlal R (2010) Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res 10:587–596

    CAS  PubMed  Google Scholar 

  • Qilin Yu, Dong Yijie, Ning Xu, Qian Kefan, Chen Yulu, Zhang Biao, Xing Laijun, Li Mingchun (2014) A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans. FEMS Yeast Res 14:1037–1047

    Google Scholar 

  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibabu V, Fatima Z, Khan LA, Hameed S (2015) Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sci 823539:1–10

  • Shreaz S, Bhatia R, Khan N, Sheikh Ahmad I, Muralidhar S, Basir SF, Manzoor N, Khan LA (2011) Interesting anticandidal effects of anisic aldehydes on growth and proton-pumping-ATPase-targeted activity. Microb Pathog 51:277–284

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Kumar TR, Gupta VK, Chaturvedi P (2012) Antimicrobial activity of some promising plant oils, molecules and formulations. Indian J Exp Biol 50:714–717

    PubMed  Google Scholar 

  • Singh S, Fatima Z, Hameed S (2015) Predisposing factors endorsing Candida infections. Le Infezioni in Medicina 3:211–219

    Google Scholar 

  • Song JC, Stevens DA (2015) Caspofungin: pharmacodynamics, pharmacokinetics, clinical uses and treatment outcomes. Crit Rev Microbiol 15:1–34

    Article  Google Scholar 

  • Sun L, Liao K, Wang D (2015) Effects of Magnolol and Honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS ONE 10:e0117695

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 541340:1–7

    Google Scholar 

  • Thomas E, Roman E, Claypool S, Manzoor N, Pla J, Panwar SL (2013) Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob Agents Chemother 57:5580–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y (2012) The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 7:e30147–e30157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vediyappan G, Dumontet V, Pelissier F, d’Enfert C (2013) Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS ONE 8:e74189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  • Wu XZ, Cheng AX, Sun LM, Sun SJ, Lou HX (2009) Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim Biophys Acta 1790:770–777

    Article  CAS  PubMed  Google Scholar 

  • Yu LH, Wei X, Ma M, Chen XJ, Xu SB (2012) Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother 56:770–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JJ, Brewer GJ, Boxler DJ (2014) Comparisons of antifeedancy and spatial repellency of three natural product repellents against horn flies, Haematobia irritans (Diptera: Muscidae). Pest Manag Sci. doi:10.1002/ps.3960

    Google Scholar 

  • Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomed 18:1181–1190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.H. thank for the financial assistance in the form of Young Scientist award (SR/FT/LS-12/2012) from Science and Engineering Research Board (SERB), New Delhi. We are grateful to Joseph Heitman for providing Candida reference and calcineurin mutant strains as generous gift. We are grateful to Sumathi Muralidhar, Regional Sexually Transmitted Disease Research Centre, Safdarjung Hospital, New Delhi, for providing clinical isolates of C. albicans and non-C. albicans strains. We acknowledge the assistance of Jasvir Singh and Rita Salam, IARI, New Delhi, for assisting us in TEM and SEM experiments, respectively. We thank Rajendra Prasad, Director of Amity Institute of Biotechnology for encouragement and providing the available facilities for research in the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Hameed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Shweta Singh and Zeeshan Fatima have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Fatima, Z. & Hameed, S. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans . Arch Microbiol 198, 459–472 (2016). https://doi.org/10.1007/s00203-016-1205-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1205-9

Keywords

Navigation