Skip to main content
Log in

Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-staining-positive, solvent-tolerating (acetophenone, benzene, toluene, xylene and hexane), aerobic, non-motile, terminal endospore-forming, rod-shaped bacterium was isolated from a bottle of xylene. The strain, designated JC22T, was found to be oxidase and catalase positive. The strain was able to tolerate solvents with different log p values like acetophenone (log P = 1.5), benzene (log P = 2.0), toluene (log P = 2.5), xylene (log P = 3.2) and hexane (log P = 3.4), though it could not use them as sole carbon sources. Based on the 16S rRNA gene sequence analysis, strain JC22T was identified as belonging to the genus Lysinibacillus and was most closely related to Lysinibacillus sinduriensis BLB-1T (98.1 %), Lysinibacillus halotolerans LAM612T (97.8 %), Lysinibacillus chungkukjangi 2RL3-2T (97.6 %) and Lysinibacillus xylanilyticus XDB9T (97.1 %). The DNA–DNA relatedness of strain JC22T with the type strains of closest species was <30 %. Strain JC22T grew chemoorganoheterotrophically with an optimal pH of 7–8 (range 6–10) at 35–37 °C (range 25–40 °C). The DNA G+C content was 41.2 mol%. The major cellular fatty acids were iso-C15:0, anteiso-C15:0 and iso-C16:0. Cell wall peptidoglycan type was determined to be A4α (l-Lys–d-Asp). Predominant quinone system was MK-7 with moderate amounts of MK-6, MK-6(H2) and MK-7(H2). Polar lipids of strain JC22T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. On the basis of morphological, physiological, genetic, phylogenetic and chemotaxonomical analyses, we conclude that strain JC22T be assigned the status of novel species of the genus Lysinibacillus for which the name Lysinibacillus xyleni sp. nov. is proposed. Type strain of the species is JC22T (= CCUG 57912T = KCTC 13604T = NBRC 105753T = DSM 23555T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb.nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Azmatunnisa M, Rahul K, Lakshmi KVNS, Sasikala C, Ramana CV (2015) Lysinibacillus acetophenoni sp. nov., a solvent tolerant bacterium isolated from acetophenone. Int J Syst Evol Microbiol 65:1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Cappuccino JG, Sherman N (1998) Microbiology—a laboratory manual, 5th edn. Benjamin/Cummings Science Publishing, California

    Google Scholar 

  • Gaballa A, Antelmann H, Aguilar C, Khakn SK, Song KB, Smaldone GT, Helmann JD (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci USA 105:11927–11932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29:44–54

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  PubMed  Google Scholar 

  • Jung MY, Kim JS, Peak WK, Styrak I, Park IS, Sin Y, Peak J, Park KA, Kim H, Kim HL, Chang YH (2012) Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int J Syst Evol Microbiol 62:2347–2355

    Article  CAS  PubMed  Google Scholar 

  • Kates M (1972) Techniques of lipidology. Elsevier, New York

    Book  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi KVNS, Sasikala C, Ashok Kumar GV, Chandrasekaran R, Ramana CV (2011) Phaeovibrio sulfidiphilus gen. nov. sp. nov., a phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 61:828–832

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze S, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140

    Article  CAS  Google Scholar 

  • Ramaprasad EVV, Sasikala C, Ramana CV (2015) Flectobacillus rhizosphaerae sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), and emended description of the genus Flectobacillus. Int J Syst Evol Microbiol 65:3451–3456

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc, Newark

    Google Scholar 

  • Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Sci 77:194

    Article  CAS  Google Scholar 

  • Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129

    Article  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) manual of methods for general bacteriology. American society for Microbiology, Washington, DC, pp 409–443

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis (MEGA) using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Tindall BJ, Tomlinson GA, Hochstein LI (1987) Polar lipid composition of a new halobacterium. Syst Appl Microbiol 9:6–8

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29:442–452

    Article  CAS  PubMed  Google Scholar 

  • Tourova TP, Antonov AS (1988) Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355

    Article  Google Scholar 

  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2011) Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulose. Chemosphere 83:706–712

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Zhao F, Feng Y, Chen R, Zhang J, Lin X (2015) Lysinibacillus alkaliphilus sp. nov., an extremely alkaliphilic bacterium, and emended description of genus Lysinibacillus. Int J Syst Evol Microbiol 65:2426–2431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The infrastructural support provided at Jawaharlal Nehru Technological University Hyderabad by TEQIP and DST-FIST is acknowledged. Infrastructural support provided at University of Hyderabad under DST-FIST level-II and UGC-SAP (DRS) is acknowledged. ABM thanks the University Grants commission for the award of Moulana Azad National Fellowship (MANF). KR thanks the CSIR, New Delhi, for the award of SRF. We thank Prof. J. Euzéby for his expert suggestion for correct species epithet and Latin etymology. KCTC is duly acknowledged for providing L. sinduriensis KCTC 13296T in exchange. Dr. Soon-Wo Kwon of KACC is greatly acknowledged for providing L. chungkukjangi KACC 16626T. Dr. Zhiyong Ruan of ACCC is greatly acknowledged for providing L. halotolerans ACCC 00718T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chintalapati Sasikala.

Additional information

Communicated by Erko Stackebrandt.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JC22T is FN179487.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary material 2 (PPTX 1414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, M.A., Rahul, K., Sasikala, C. et al. Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene. Arch Microbiol 198, 325–332 (2016). https://doi.org/10.1007/s00203-016-1194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1194-8

Keywords

Navigation