Skip to main content
Log in

Development of sequence-characterized amplified region (SCAR) markers as a quality standard of inoculants based on Azospirillum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An attempt was made in this work to develop a strain-level molecular marker for unambiguous authentication of two Azospirillum inoculants, viz. A. lipoferum (strain Az204) and A. brasilense (strain Sp7). The sequence-characterized amplified region (SCAR) markers obtained from DNA fingerprints were designed for discrete detection of the strains. The SCAR primers could successfully amplify the target strain without cross-reaction with other Azospirillum strains, native isolates and other inoculants. The detection limit of SCAR primer for Az204 was 8.00 pg of DNA (approximately 105 cells per mL), and for Sp7, it was 0.49 pg of DNA (equal to 104 cells per mL). A simplified Sephadex G100-based crude DNA extraction protocol developed in this study was found suitable for SCAR marker-based strain authentication. Further, SCAR primers were assessed for simultaneous authentication as well as quantification of commercially prepared Azospirillum inoculants by quantitative real-time PCR (RT-PCR) and most-probable-number PCR (MPN-PCR). The RT-PCR assay can be able to quantify the commercial formulations as equal to culturable MPN method, while MPN-PCR failed for Az204. The SCAR marker-based strain authentication and presumptive quantification developed in the present work can contribute to improving the quality standard of commercial inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi PA, Miller SA, Meulia T, Hoitink HAJ, Kim J-M (1999) Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Appl Environ Microbiol 65:5421–5426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abbaszadegan M, Huber MS, Gerba CP, Pepper IL (1993) Detection of enteroviruses in groundwater with the polymerase chain reaction. Appl Environ Microbiol 59:1318–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander M (1965) Most probable number method for microbial population. In: Black CA (ed) Methods of soil analysis. Part II. Chemical and biological properties. American society for Agronomy, Madison, pp 1467–1472

    Google Scholar 

  • Appuhamy S, Parton R, Coote JG, Gibbs HA (1997) Genomic fingerprinting of Haemophilus somnus by a combination of PCR methods. J Clin Microbiol 35:288–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y (2009) Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41:409–413. doi:10.1016/j.soilbio.2008.10.015

    Article  CAS  Google Scholar 

  • Becker EM, Ball LA, Hintz WE (1999) PCR-Based genetic markers for detection and infection frequency analysis of the biocontrol fungus Chondrostereum purpureumon Sitka Alder and Trembling Aspen. Biol Control 15:71–80. doi:10.1006/bcon.1999.0693

    Article  Google Scholar 

  • Braun-Kiewnick A, Lehmann A, Rezzonico F, Wend C, Smits THM, Duffy B (2012) Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring. J Microbiol Methods 90:315–320. doi:10.1016/j.mimet.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  • Castrillo LA, Vandenberg JD, Wraight SP (2003) Strain-specific detection of introduced Beauveria bassiana in agricultural fields by use of sequence-characterized amplified region markers. J Invertebr Pathol 82:75–83. doi:10.1016/S0022-2011(02)00190-8

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai C, Gopalaswamy G, Balachandar D (2013) Diversity of cultivable Azotobacter in the semi-arid Alfisol receiving long-term organic and inorganic nutrient amendments. Ann Microbiol 63:1397–1404. doi:10.1007/s13213-013-0600-6

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Couillerot O, Bouffaud M-L, Baudoin E, Muller D, Caballero-Mellado J, Moënne-Loccoz Y (2010a) Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol Biochem 42:2298–2305. doi:10.1016/j.soilbio.2010.09.003

    Article  CAS  Google Scholar 

  • Couillerot O, Poirier MA, Prigent-Combaret C, Mavingui P, Caballero-Mellado J, Moënne-Loccoz Y (2010b) Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. J Appl Microbiol 109:528–538. doi:10.1111/j.1365-2672.2010.04673.x

    CAS  PubMed  Google Scholar 

  • Dauch AL, Watson AK, Jabaji-Hare SH (2003) Detection of the biocontrol agent Colletotrichum coccodes (183088) from the target weed velvetleaf and from soil by strain-specific PCR markers. J Microbiol Methods 55:51–64. doi:10.1016/S0167-7012(03)00116-7

    Article  CAS  PubMed  Google Scholar 

  • De Clercq D, Cognet S, Pujol M, Lepoivre P, Jijakli MH (2003) Development of a SCAR marker and a semi-selective medium for specific quantification of Pichia anomala strain K on apple fruit surfaces. Postharvest Biol Technol 29:237–247. doi:10.1016/S0925-5214(03)00044-9

    Article  Google Scholar 

  • Fancelli S et al (1998) Use of random amplified polymorphic DNA markers for the detection of Azospirillum strains in soil microcosms. Appl Microbiol Biotechnol 49:221–225. doi:10.1007/s002530051162

    Article  CAS  Google Scholar 

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti M (2008a) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270. doi:10.1016/j.apsoil.2008.05.002

    Article  Google Scholar 

  • Felici C, Vettori L, Toffanin A, Nuti M (2008b) Development of a strain-specific genomic marker for monitoring a Bacillus subtilis biocontrol strain in the rhizosphere of tomato. FEMS Microbiol Ecol 65:289–298

    Article  CAS  PubMed  Google Scholar 

  • Gobbin D, Rezzonico F, Gessler C (2007) Quantification of the biocontrol agent Pseudomonas fluorescens Pf153 in soil using a quantitative competitive PCR assay unaffected by variability in cell lysis- and DNA-extraction efficiency. Soil Biol Biochem 39:1609–1619. doi:10.1016/j.soilbio.2007.01.015

    Article  CAS  Google Scholar 

  • Grosch R, Schneider JHM, Peth A, Waschke A, Franken P, Kofoet A, Jabaji-Hare SH (2007) Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers. J Appl Microbiol 102:806–819. doi:10.1111/j.1365-2672.2006.03125.x

    Article  CAS  PubMed  Google Scholar 

  • Holmberg A-IJ, Melin P, Levenfors JP, Sundh I (2009) Development and evaluation of SCAR markers for a Pseudomonas brassicacearum strain used in biological control of snow mould. Biol Control 48:181–187. doi:10.1016/j.biocontrol.2008.10.016

    Article  CAS  Google Scholar 

  • Hulton CSJ, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834. doi:10.1111/j.1365-2958.1991.tb00755.x

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy R, Prasad N (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496–497

    Google Scholar 

  • Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270. doi:10.1016/S0378-4290(99)00091-X

    Article  Google Scholar 

  • Mahajan A, Gupta RD (2009) Integrated nutrient management (INM) in a sustainable rice—wheat cropping system. Springer, Netherlands. doi:10.1007/978-1-4020-9875-8_4

    Book  Google Scholar 

  • Martin B et al (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3483. doi:10.1093/nar/20.13.3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melody SC (1997) Plant molecular biology—a laboratory manual. Springer, New York

    Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Loccoz Y, Bally R, Malik K (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170. doi:10.1007/s00374-006-0074-9

    Article  CAS  Google Scholar 

  • Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol 24:1395–1403. doi:10.1139/m78-223

    Article  CAS  PubMed  Google Scholar 

  • Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37:1661–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paavanen-Huhtala S, Avikainen H, Yli-Mattila T (2000) Development of strain-specific primers for a strain of Gliocladium catenulatum used in biological control. Eur J Plant Pathol 106:187–198. doi:10.1023/A:1008734519852

    Article  CAS  Google Scholar 

  • Rezzonico F, Moënne-Loccoz Y, Défago G (2003) Effect of stress on the ability of a phlA-based quantitative competitive PCR assay to monitor biocontrol strain Pseudomonas fluorescens CHA0. Appl Environ Microbiol 69:686–690. doi:10.1128/aem.69.1.686-690.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophy Biomol Struct 33:415–440. doi:10.1146/annurev.biophys.32.110601.141800

    Article  CAS  Google Scholar 

  • Savazzini F, Longa CMO, Pertot I (2009) Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem 41:1457–1465. doi:10.1016/j.soilbio.2009.03.027

    Article  CAS  Google Scholar 

  • Schulz S, Peréz-de-Mora A, Engel M, Munch JC, Schloter M (2010) A comparative study of most probable number (MPN)-PCR vs. real-time-PCR for the measurement of abundance and assessment of diversity of alkB homologous genes in soil. J Microbiol Methods 80:295–298. doi:10.1016/j.mimet.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  • Shime-Hattori A, Kobayashi S, Ikeda S, Asano R, Shime H, Shinano T (2011) A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. J Appl Microbiol 111:915–924. doi:10.1111/j.1365-2672.2011.05115.x

    Article  CAS  PubMed  Google Scholar 

  • Transparency Market Research (2014) Biofertilizers (nitrogen Fixing, phosphate solubilizing and others) market for seed treatment and soil treatment applications—global industry analysis, size, share, growth, trends and forecast, 2013–2019. Transparency Market Research, Allbany

    Google Scholar 

  • Vendan R, Thangaraju M (2007) Development and standardization of cyst based liquid formulation of Azospirillum bioinoculant. Acta Microbiol Immunol Hung 54:167–177. doi:10.1556/AMicr.54.2007.2.7

    Article  PubMed  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction Method. Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vila J, Marcos MA, Jimenez de Anta MT (1996) A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticusA. baumannii complex. J Med Microbiol 44:482–489. doi:10.1099/00222615-44-6-482

    Article  CAS  PubMed  Google Scholar 

  • Von Felten A, Défago G, Maurhofer M (2010) Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J Microbiol Methods 81:108–115. doi:10.1016/j.mimet.2010.02.003

    Article  Google Scholar 

  • XLSTAT (2010) XLSTAT. Addinsoft SARL, Paris. http://www.xlstat.com

Download references

Acknowledgments

The financial support given by Department of Biotechnology, New Delhi, through R&D Project (Development of SCAR markers for strain authentication and to improve the quality assessment of bioinoculants, Sanction No. BT/PR6450/AGR/21/358/2012) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dananjeyan Balachandar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jorge Membrillo-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy Priya, P., Selastin Antony, R., Gopalaswamy, G. et al. Development of sequence-characterized amplified region (SCAR) markers as a quality standard of inoculants based on Azospirillum . Arch Microbiol 198, 257–267 (2016). https://doi.org/10.1007/s00203-016-1187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1187-7

Keywords

Navigation