Skip to main content
Log in

Paracoccus gahaiensis sp. nov. isolated from sediment of Gahai Lake, Qinghai-Tibetan Plateau, China

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2016

Abstract

An aerobic, orange-pigmented, Gram-negative, coccoid bacterium, named CUG 00006T, was isolated from the sediment of Gahai Lake, Qinghai Province, China. This organism was alkaline and grew optimally at pH 9 and 20 °C in the presence of 4 % (w/v) NaCl. Strain CUG 00006T contained Q-10 as the major isoprenoid quinone and C18:1ω7c as the main fatty acids. The DNA G + C content was 67.8 mol%. The analysis of 16S rRNA gene sequences indicated that strain CUG 00006T was phylogenetically related to members of the genus Paracoccus, with the similarities ranging from 93.5 to 97.9 %. In particular, strain CUG 00006T was closely related to P. marcusii DSM 11574T (97.7 %), P. haeundaensis KCCM 10460T (97.8 %), and P. carotinifaciens IFO 16121T (97.7 %). On the basis of phylogenetic, physiological, and biochemical characterization, strain CUG 00006T is described as a new species of the genus Paracoccus, for which the name Paracoccus gahaiensis sp. nov. is proposed. The type strain is strain CUG 00006T (=CCTCC M 2014217T = KCTC 42687T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barrow G, Feltham RKA (2004) Cowan and Steel’s manual for the identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen M-H, Sheu S-Y, Chen CA, Wang J-T, Chen W-M (2011) Paracoccus isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 61:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. Microbiology 100:221–230

    CAS  Google Scholar 

  • Davis DH, Doudoroff M, Staninr RY, Mandel M (1969) Proposal to reject the genus hydrogenomonas: taxonomic implications. Int J Syst Evol Microbiol 19:375–390

    Google Scholar 

  • Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Fredrickson JK et al (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  CAS  PubMed  Google Scholar 

  • Ghosh W, Mandal S, Roy P (2006) Paracoccus bengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Syst Appl Microbiol 29:396–403

    Article  CAS  PubMed  Google Scholar 

  • Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Evol Microbiol 48:543–548

    Google Scholar 

  • Jiang Y, Tang S-K, Wiese J, Xu L-H, Imhoff JF, Jiang C-L (2007) Streptomyces hainanensis sp. nov., a novel member of the genus Streptomyces. Int J Syst Evol Microbiol 57:2694–2698

    Article  CAS  PubMed  Google Scholar 

  • Jiang H et al (2009) Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol 67:268–278

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z et al (2014) Bacillus tianshenii sp. nov., isolated from a marine sediment sample. Int J Syst Evol Microbiol 64:1998–2002

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, Rainey F, Wood A (2006) The genus Paracoccus. Springer, Berlin, pp 232–249

    Google Scholar 

  • Kim JM, Le NT, Chung BS, Park JH, Bae J-W, Madsen EL, Jeon CO (2008) Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 74:7313–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-O et al (2010) Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. Int J Syst Evol Microbiol 60:2908–2912

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YS, Choi T-J, Lee WJ, Kim YT (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Woo S-G, Park G, Kim MK (2011) Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 61:1968–1972

    Article  CAS  PubMed  Google Scholar 

  • Li H-F, Qu J-H, Yang J-S, Li Z-J, Yuan H-L (2009) Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. Int J Syst Evol Microbiol 59:2670–2674

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-P, Wang B-J, Liu X-Y, Dai X, Liu Y-H, Liu S-J (2008) Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 58:257–261

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167

    CAS  Google Scholar 

  • Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of cellulomonas, oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  • Neter E (1965) Manual for the identification of medical bacteria. Am J Public Health Nations Health 55:2047

    Article  PubMed Central  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roh SW et al (2009) Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:790–794

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163:709–716

    Article  CAS  PubMed  Google Scholar 

  • Siller H, Rainey FA, Stackebrandt E, Winter J (1996) Isolation and characterization of a new Gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov. Int J Syst Evol Microbiol 46:1125–1130

    CAS  Google Scholar 

  • Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Evol Microbiol 49:277–282

    CAS  Google Scholar 

  • Zheng M (1997) An introduction to saline Lakes on the Qinghai—Tibet plateau. Springer, Berlin

    Google Scholar 

  • Zhou Q, Zhang P, Zhang G (2014) Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity. Bioresour Technol 171:330–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Grant Nos. 41422208, 41521001, and 41302022), State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (No. GBL11201), and the Fundamental Research Funds for National University, China University of Geosciences (Wuhan). W.-J. Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014). We are grateful to the anonymous reviewers whose constructive comments significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchen Jiang or Wenjun Li.

Additional information

Communicated by Erko Stackebrandt.

The GenBank accession number for the 16S rRNA gene sequence of strain CUG 00006T is KT345705.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00203-016-1292-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xian, W., Yang, J. et al. Paracoccus gahaiensis sp. nov. isolated from sediment of Gahai Lake, Qinghai-Tibetan Plateau, China. Arch Microbiol 198, 227–232 (2016). https://doi.org/10.1007/s00203-015-1184-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1184-2

Keywords

Navigation