Skip to main content

Advertisement

Log in

Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0–25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a−1 h−1 and 97 mL H2 mg chl a−1, respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams DG (1992) The effect of DL-7-azatryptophan on heterocyst development in the cyanobacterium Anabaena cylindrica. J Gen Mirobiol 138:355–362

    Article  CAS  Google Scholar 

  • Agrawal M, Kumar HD (1978) Effect of 7-Azatryptophan on heterocyst differentiation in Anabaena doliolum Bharadwaja. Proc Indian Acad Sci B 87B(1):31–39

    Google Scholar 

  • Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro E-M (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 35:1117–1127

    Article  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840

    Article  CAS  Google Scholar 

  • Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enzyme Microb Technol 1:83–90

    Article  CAS  Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Bothe H, Eisbrenner G (1977) Effect of 7-azatryptophan on nitrogen fixation and heterocyst formation in the blue-green alga Anabaena cylindrica. Biochem Physiol Pflanz 133:323–332

    Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bottomley PJ, Van Baalen C, Tabita FR (1980) Heterocyst differentiation and tryptophan metabolism in the cyanobacterium Anabaena sp. CA. Arch Biochem Biophys 203:204–213

    Article  CAS  PubMed  Google Scholar 

  • Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci USA 98:2729–2734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Van Baalen C, Tabita FT (1987) Nitrogen starvation mediated by DL-7-Azatryptophan in the cyanobacterium Anabaena sp. strain CA. J Bacteriol 169(3):1107–1113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M, Zhang Z, Wang C, Zhang L, Li J, Chang S, Mao Z, Li S (2013) Improving conversion efficiency of solar energy to electricity in cyanobacterial PEMFC by high levels of photo-H2 production. Int J Hydrog Energy 38(31):13556–13563

    Article  CAS  Google Scholar 

  • Chen M, Li J, Zhang L, Chang S, Liu C, Wang J, Li S (2014) Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria. Nature Sci Rep 4:3998

    Google Scholar 

  • Christman H, Campbell E, Risser D, Phinney B, Chiu W-L, Meeks JC (2012) Systems level approaches to understanding and manipulating heterocyst differentiation in Nostoc punctiforme: sites of hydrogenase and nitrogenase synthesis and activity. In: Proceedings of the 2012 Department of Energy (DOE) Genomic Science Program Awardee Meeting, 72

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Ferreira AF, Marques AC, Batista AP, Marques PAAS, Gouveia L, Silva CM (2012) Biological hydrogen production by Anabaena sp.—yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy 37:179–190

    Article  CAS  Google Scholar 

  • Greenbaum E, Lee JW (1998) Photosynthetic hydrogen and oxygen production by green algae: an overview. Plenum Press, New York

    Google Scholar 

  • Hallenbeck PC (2012) Hydrogen production by cyanobacteria. Microbial technologies in advanced biofuels production. Springer, Canada, pp 15–28

    Book  Google Scholar 

  • Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538

    Article  CAS  PubMed  Google Scholar 

  • Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30(5):989–1000

    Article  CAS  PubMed  Google Scholar 

  • Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirecting the electron flow towards the nitrogenase and bidirectional Hox hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ishiura M (2000) The circadian clock of cyanobacteria. BioEssays 22(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro EM, Allahverdiyeva Y, Milliken CE (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37(1):151–161

    Article  CAS  Google Scholar 

  • Liu J, Bukatin VE, Tsygankov AA (2006) Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int J Hydrog Energy 31(11):1591–1596

    Article  CAS  Google Scholar 

  • Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767

    Article  CAS  Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microb Technol 17(4):306–310

    Article  CAS  Google Scholar 

  • Markov SA, Thomas AD, Bazin MJ, Hall DO (1997) Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Int J Hydrog Energy 22(5):521–524

    Article  CAS  Google Scholar 

  • Markov SA, Protasov ES, Bybin VA, Eivazovaa ER, Stom DI (2015) Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor. int. J. Hydrog Energy 40(14):4752–4757

    Article  CAS  Google Scholar 

  • Marques AE, Barbosa AT, Jotta J, Coelho MC, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenergy 35(10):4426–4434

    Article  CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  CAS  PubMed  Google Scholar 

  • Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Site-directed mutagenesis of the Anabaena sp. Strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76(20):6741–6750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masukawa H, Sakurai H, Hausinger RP, Inoue K (2014) Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int J Hydrog Energy 39(34):19444–19451

    Article  CAS  Google Scholar 

  • Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus Lividus (Cyanophyta). Arch Microbiol 78:25–41

    CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chloropta) with small chlorophyll antenna size exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Article  Google Scholar 

  • Mitchison GJ, Wilcox M (1973) Alteration in heterocyst pattern of Anabaena produced by 7-Azatryptophan. Nat New Biol 246:229–233

    Article  CAS  PubMed  Google Scholar 

  • Mitchison GJ, Wilcox M, Smith RJ (1976) Measurement of an inhibitory zone. Science 191(4229):866–868

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Itayama T (2003) Analysis of photosynthesis productivity of microalgal mass cultures. J Appl Phycol 15:497–505

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 12:285–290

    Article  CAS  Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antaenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Kumar R, Sood A, Prasanna BM, Singh PK (2006) Morphological, physiochemical and molecular characterization of Anabaena strains. Microbiol Res 161(3):187–202

    Article  CAS  PubMed  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogerson AC (1979) Modifiers of heterocyst repression and spacing and formation of heterocyst without nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 140(1):213–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salleh SF, Kamaruddin A, Uzir MH, Mohamed AR (2014) Effects of cell density, carbon dioxide and molybdenum concentration on biohydrogen production by Anabaena variabilis ATCC 29413. Energy Convers Manag 87:599–605

    Article  CAS  Google Scholar 

  • Schütz K, Happe T, Troshina O, Lindblad P, Leitão E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218(3):350–359

    Article  PubMed  Google Scholar 

  • Staal M, te Lintel-Hekkert S, Harren F, Stal L (2001) Nitrogenase activity in cyanobacteria measured by the acetylene reduction assay: a comparison between batch incubation and on-line monitoring. Environ Microbiol 3(5):343–351

    Article  CAS  PubMed  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147(2):297–301

    Article  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel T (2006) Nitrogenase, hydrogenase and hydrogen production by cyanobacteria. New Delhi, India, Pvt. Ltd

  • Thiel T, Pratte B (2013) Alternative nitrogenases in anabaena variabilis: the role of molybdate and vanadate in nitrogenase gene. Adv Microbiol 3(6A):87–95

    Article  Google Scholar 

  • Thiel T, Lyons EM, Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179(16):5222–5225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel T, Pratte B, Zahalak M (2002) Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch Microbiol 179:50–56

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov AA (2007) Biological generation of hydrogen. Russ J Gen Chem 77(4):685–693

    Article  CAS  Google Scholar 

  • Tsygankov AA, Serebryakova LT, Rao KK, Hall DO (1998) Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167(1):13–17

    Article  CAS  Google Scholar 

  • Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407

    Article  CAS  Google Scholar 

  • Tyagi VVS (1975) The heterocysts of blue-green algae (myxophyceae). Biol Rev 50(3):247–284

    Article  CAS  PubMed  Google Scholar 

  • Van de Water S, Simon RD (1984) Heterocyst differentiation in Cylindrospermum licheniforme: studies on the role of transcription. J Gen Microbiol 130:789–796

    PubMed  Google Scholar 

  • Weare NM, Benemann JR (1972) Nitrogen fixation by Anabaena cylindrica I. Localization of nitrogen fixation in heterocyst. Arch Microbiol 90:323–332

    Google Scholar 

  • Wei TF, Ramasubramanian TS, Golden JW (1994) Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J Bacteriol 176(15):4473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 769–823

    Chapter  Google Scholar 

  • Wu SC, Lu PF, Lin YC, Chen PC, Lee CM (2012) Bio-hydrogen production enhancement by co-cultivating Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3. Int J Hydrog Energy 37(3):2231–2238

    Article  CAS  Google Scholar 

  • Xuefeng L (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746

    Article  Google Scholar 

  • Yong YC, Zhong JJ (2010) Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45(12):1937–1943

    Article  CAS  Google Scholar 

  • Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy 31:721–727

    Article  CAS  Google Scholar 

  • Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae Spain, Formatex

Download references

Acknowledgments

The authors would like to acknowledge Universiti Sains Malaysia for funding this current research work through the Long Term Research Grant Scheme (LRGS) 203/PKT/6723003. MyBrain15 Programme from the Ministry of Education, Malaysia for its financial assistance to Siti Fatihah Salleh is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azlina Kamaruddin.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salleh, S.F., Kamaruddin, A., Uzir, M.H. et al. Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413. Arch Microbiol 198, 101–113 (2016). https://doi.org/10.1007/s00203-015-1164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1164-6

Keywords

Navigation