Skip to main content
Log in

Construction and pilot screening of a signature-tagged mutant library of Sinorhizobium fredii

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sinorhizobium fredii is well known for its ability to establish symbiosis with diverse legumes such as Glycine max (soybean, determinate nodules) and Cajanus cajan (pigeon pea, indeterminate nodules). In order to make screening of S. fredii genes related to symbiosis cost-effective, we constructed a large Tn5 insertion mutant library of S. fredii CCBAU45436 using the signature-tagged mutagenesis (STM) technique. This STM library contains a total of 25,500 independent mutants distributed in 17 sublibraries tagged by corresponding distinct DNA bar-code sequences. After the pilot screening of 255 mutants in 15 batches, Tag85-4, Tag4-17, Tag4-11 and Tag10-13 were found to have attenuated competitiveness (0–30 % in nodule occupation) compared to the wild-type strain when inoculated on soybean. Further characterization of these mutants suggests that Tag4-11 (a pyrC mutant) and Tag10-13 (a nrdJ mutant) are defective in establishing symbiosis with soybean. The pyrC mutant induced uninfected pseudonodules while the nrdJ mutant formed significantly more nodules containing bacteroids with poor persistence ability. When these two mutants were tested on pigeon pea, host-specific symbiotic defects were found. These results demonstrated the STM library as a valuable resource for identifying S. fredii genes relevant to symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Autret N, Charbit A (2005) Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 29:703–717

    Article  CAS  PubMed  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Crespo-Rivas JC, Margaret I, Perez-Montano F et al (2007) A pyrF auxotrophic mutant of Sinorhizobium fredii HH103 impaired in its symbiotic interactions with soybean and other legumes. Int Microbiol 10:169–176

    CAS  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E et al (1985) Plasmids related to the broad host range vector, Prk290, useful for gene cloning and for monitoring gene-expression. Plasmid 13:149–153

    Article  CAS  PubMed  Google Scholar 

  • Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. African J Biotechnol 9:8619–8629

    CAS  Google Scholar 

  • Han LL, Wang ET, Han TX et al (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305

    Article  CAS  Google Scholar 

  • Hunt TA, Kooi C, Sokol PA, Valvano MA (2004) Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 72:4010–4022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Lam H-M, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tian CF, Chen WF et al (2013) High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One 8:e70531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y-H, Zhou G, Ma J et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Mitsui H, Borjigin N, Furukawa K et al (2011) Identification of Mesorhizobium loti genes relevant to symbiosis by using signature-tagged mutants. Microbes Environ 26:165–171

    Article  PubMed  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oono R, Schmitt I, Sprent JI, Denison RF (2010) Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol 187:508–520

    Article  CAS  PubMed  Google Scholar 

  • Pobigaylo N, Wetter D, Szymczak S et al (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 72:4329–4337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pobigaylo N, Szymczak S, Nattkemper TW, Becker A (2008) Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol Plant Microbe Interact 21:219–231

    Article  CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S et al (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Searle IR, Men AE, Laniya TS et al (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Shimoda Y, Mitsui H, Kamimatsuse H et al (2008) Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res 15:297–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taga ME, Walker GC (2010) Sinorhizobium meliloti requires a Cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. Mol Plant Microb Int 23:1643–1654

    Article  CAS  Google Scholar 

  • Tian CF, Garnerone A-MM, Mathieu-Demazière C et al (2012a) Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis. Proc Natl Acad Sci USA 109:6751–6756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian CF, Zhou YJ, Zhang YM et al (2012b) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 109:8629–8634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Vineetha KE, Vij N, Prasad CK et al (2001) Ultrastructural studies on nodules induced by pyrimidine auxotrophs of Sinorhizobium meliloti. Indian J Exp Biol 39:371–377

    CAS  PubMed  Google Scholar 

  • Wolk CP, Cai Y, Panoff J-M (1991) Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA 88:5355–5359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu LJ, Wang HQ, Wang ET et al (2011) Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in different ecoregions of China. FEMS Microbiol Ecol 76:439–450

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Li Y Jr, Chen WF et al (2011) Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Env Microbiol 77:6331–6342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anke Becker and Dr. Hisayuki Mitsui for providing pG18Mob2 and pTnMod-OΩ, respectively. We also thank Dr. J. Peter W. Young for polishing the language. This work was supported by National Basic Research Program of China (973 Program 2015CB158300), Innovative Project of State Key Laboratory of Agrobiotechnology (2014SKLAB4-1), and Chinese Universities Scientific Fund for graduate students (2012YJ035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Fu Tian.

Additional information

Communicated by Shuang-Jiang Liu.

Dan Wang and Yuan Chun Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Supplementary material 2 (PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, Y.C., Wu, L.J. et al. Construction and pilot screening of a signature-tagged mutant library of Sinorhizobium fredii . Arch Microbiol 198, 91–99 (2016). https://doi.org/10.1007/s00203-015-1161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1161-9

Keywords

Navigation