Skip to main content

Advertisement

Log in

Novel antimicrobial peptide specifically active against Porphyromonas gingivalis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Porphyromonas gingivalis, the major etiologic agent of chronic periodontitis, produces a broad spectrum of virulence factors, including outer membrane vesicles, lipopolysaccharides, hemolysins and proteinases. Antimicrobial peptides (AMPs) including bacteriocins have been found to inhibit the growth of P. gingivalis; however, these peptides are relatively large molecules. Hence, it is difficult to synthesize them by a scale-up production. Therefore, this study aimed to synthesize a shorter AMP that was still active against P. gingivalis. A peptide that contained three cationic amino acids (Arg, His and Lys), two anionic amino acids (Glu and Asp), hydrophobic amino acids residues (Leu, Ile, Val, Ala and Pro) and hydrophilic residues (Ser and Gly) was obtained and named Pep-7. Its bioactivity and stability were tested after various treatments. The mechanism of action of Pep-7 and its toxicity to human red blood cells were investigated. The Pep-7 inhibited two pathogenic P. gingivalis ATCC 33277 and P. gingivalis ATCC 53978 (wp50) strains at a minimum bactericidal concentration (MBC) of 1.7 µM, but was ineffective against other oral microorganisms (P. intermedia, Tannerella forsythensis, Streptococcus salivarius and Streptococcus sanguinis). From transmission electron microscopy studies, Pep-7 caused pore formation at the poles of the cytoplasmic membranes of P. gingivalis. A concentration of Pep-7 at four times that of its MBC induced some hemolysis but only at 0.3 %. The Pep-7 was heat stable under pressure (autoclave at 110 and 121 °C) and possessed activity over a pH range of 6.8–8.5. It was not toxic to periodontal cells over a range of 70.8–4.4 μM and did not induce toxic pro-inflammatory cytokines. The Pep-7 showed selective activity against Porphyromonas sp. by altering the permeability barriers of P. gingivalis. The Pep-7 was not mutagenic in vitro. This work highlighted the potential for the use of this synthetic Pep-7 against P. gingivalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boubaker J, Skandrani I, Bouhlel I, Ben sghaier M, Neffati A, Ghedira K, Chekir-Ghedira L (2010) Mutagenic, antimutagenic and antioxidant potency of leaf extracts from Nitraria retusa. Food Chem Toxicol 48:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Changsan N, Nilkaeo A, Pungrassami P, Srichana T (2009) Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target 17:751–762

    Article  CAS  PubMed  Google Scholar 

  • Chuealee R, Aramwit P, Noipha K, Srichana T (2011) Bioactivity and toxicity studies of amphotericin B incorporated in liquid crystals. Eur J Pharm Sci 43:308–317

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove B, Cheng C, Pritchard J, Stolz D, Lauenburger D, Grith L (2008) An inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to tumor necrosis factor-alpha. Hepatology 48:276–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York

    Book  Google Scholar 

  • Duval E, Zatylny C, Laurencin M, Baudy-Floc’h M, Henry J (2009) KKKKPLFGLFFGLF: a cationic peptide designed to exert antibacterial activity. Peptides 30:1608–1612

    Article  CAS  PubMed  Google Scholar 

  • Fox MA, Thwaite JE, Ulaeto DO, Atkins TP, Atkins HS (2012) Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33:197–205

    Article  CAS  PubMed  Google Scholar 

  • Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77:4761–4770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghassem M, Arihara K, Babji AS, Said M, Ibrahim S (2011) Purification and identification of ACE inhibitory peptides from Haruan (Channastriatus) myofibrillar protein hydrolysate using HPLC–ESI–TOF MS/MS. Food Chem 129:1770–1777

    Article  CAS  Google Scholar 

  • Grenier D (2013) Porphyromonas gingivalis outer membrane vesicles mediate coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Int J Dent 2013:1–4

    Article  Google Scholar 

  • Hajishengallis G, Lamont RJ (2014) Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immonu 44:328–338

    Article  CAS  Google Scholar 

  • Isogai E, Isogai H, Takahashi K, Okumura K, Savage PB (2009) Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral Microbiol Immunol 24:170–172

    Article  CAS  PubMed  Google Scholar 

  • Kaewnopparat S (1999) Human lactobacilli as antidiarrheal and anticholesterol bio-agents: in vitro and in vivo studies. PhD Thesis. Faculty of Graduate Studies. Mahidol University, Bangkok

  • Kaewsrichan J, Douglas CW, Nissen-Meyer J, Fimland G, Teanpaisan R (2004) Characterization of a bacteriocin produced by Prevotella nigrescens ATCC 25261. Lett Appl Microbiol 39:451–458

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Sohng JK, Sung C, Joo HS, Kim EM, Yamaguchi T, Park D, Kim BG (2010) Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2-9. Biochem Biophys Res Commun 399:133–138

    Article  CAS  PubMed  Google Scholar 

  • Kirtzalidou E, Pramateftaki P, Kotsou Kyriacou M (2011) Screening for Lactobacilli with probiotic properties in the infant gut microbiota. Anaerobe 17:440–443

    Article  CAS  PubMed  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods of the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  PubMed  Google Scholar 

  • McLean DTF, McCrudden MTC, Lindenb GJ, Irwin CR, Conlon JM, Lundy FT (2014) Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: potent activity against oral pathogens. Regul Pept 194–195:63–68

    Article  PubMed  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455(1–2):29–60

    Article  CAS  PubMed  Google Scholar 

  • Myers LN, Adams L, Kier TK, Rao B, Shaw B, Williams L (1991) Microcomputer software for data management and statistical analyses of the Ames/Salmonella test. In: Krewski D (ed) Statistical methods in toxicological research. Gordon and Breach, New York

    Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers (Pept Sci). 47:451–463

    Article  CAS  Google Scholar 

  • Pangsomboon K, Kaewnopparat S, Pitakpornpreecha T, Srichana T (2006) Antibacterial activity of a bacteriocin from Lactobacillus paracasei HL32 against Porphyromonas gingivalis. Arch Oral Biol 51:784–793

    Article  CAS  PubMed  Google Scholar 

  • Pangsomboon K, Bansal S, Martin G, Suntinanalert P, Kaewnopparat S, Srichana T (2009) Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. J Appl Microbiol 106:1928–1940

    Article  CAS  PubMed  Google Scholar 

  • Perez RH, Himeno K, Ishibashi N, Masuda Y, Zendo T, Fujita K, Wilaipun P, Leelawatcharamas Y, Nakarama J, Sonomoto K. (2012) Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. J Biosci Bioeng 114(5):490–496

    Article  CAS  PubMed  Google Scholar 

  • Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13(Suppl 1):S3

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosa RM, Melecchi MI, da Costa Halmenschlager R, Abad FC, Simoni CR, Caramão EB, Henriques JA, Saffi J, de Paula Ramos AL (2006) Antioxidant and antimutagenic properties of Hibiscus tiliaceus L. methanolic extract. J Agric Food Chem 54:7324–7330

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Prévost H, Lebois M, Dousset X, LeBlanc JG, Franco BD (2011) Bacteriocinogenic Lactobacillus plantarum ST16 Pa isolated from papaya (Carica papaya)—from isolation to application: characterization of a bacteriocin. Food Res Int 44:1351–1363

    Article  CAS  Google Scholar 

  • Walters SM, Dubey VS, Jeffrey NR, Dixon DR (2010) Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Immunol Microbiol 31:1649–1653

    CAS  Google Scholar 

  • Wang W, Tao R, Tong Z, Ding Y, Kuang R, Zhai S, Jun Liu J, Ni L (2012) Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 33:212–219

    Article  CAS  PubMed  Google Scholar 

  • Yoneda M, Hirofuji T, Motooka N, Anan H, Hamachi T, Miura M, Ishihara Y, Maeda K (2003) Antibody responses to Porphyromonas gingivalis infection in a murine abscess model—involvement of gingipains and responses to re-infection. J Periodontal Res 38(6):551–556

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organism. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang Y, Tian DTZ, Wang S, Wang J (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphylococcus and Streptococcus. Protein Expr Purif 78:189–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nanotec-PSU Center of Excellence on Drug Delivery System for financial support and Prince of Songkla University for the use of facilities. This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. Thanks to Dr. Brian Hodgson for assistance with the English.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Srichana.

Additional information

Communicated by Djamel Drider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwandecha, T., Srichana, T., Balekar, N. et al. Novel antimicrobial peptide specifically active against Porphyromonas gingivalis . Arch Microbiol 197, 899–909 (2015). https://doi.org/10.1007/s00203-015-1126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1126-z

Keywords

Navigation