Skip to main content

Advertisement

Log in

Proteomics analysis of Listeria monocytogenes ATCC 19115 in response to simultaneous triple stresses

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes can cause listeriosis in humans through consumption of contaminated food. L. monocytogenes can adapt and grow in a vast array of physiochemical stresses in the food production environment. In this study, we performed a proteomics strategy in order to investigate how L. monocytogenes survives with a simultaneous exposure to low pH, high salinity and low temperature. The results showed that the adaptation processes mainly affected the biochemical pathways related to protein synthesis, oxidative stress, cell wall and nucleotide metabolism. Interestingly, enzymes involved in the carbohydrate metabolism of energy, such as glycolysis and pentose phosphate pathway, were derepressed due to the down-regulation of CodY, a global transcriptional repressor. The down-regulation of CodY, together with the up-regulation of carbohydrate metabolism enzymes, likely leads to the accumulation of pyruvate and further to the activation of fatty acid synthesis pathway. Proteomics profiling offered a better understanding of the physiological responses of this pathogen to adapt to harsh environment and would hopefully contribute to improving the food-processing and storage methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agoston R, Soni K, Jesudhasan PR, Russell WK, Mohacsi-Farkas C, Pillai SD (2009) Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Foodborne Pathog Dis 6:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Ali V, Nozaki T (2013) Iron–sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. Adv Parasitol 83:1–92

    Article  PubMed  Google Scholar 

  • Ayala-Castro C, Saini A, Outten FW (2008) Fe–S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72:110–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett HJ et al (2007) Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol 63:1453–1467

    Article  CAS  PubMed  Google Scholar 

  • Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman JP, Hages E, Nilsson RE, Kocharunchitt C, Ross T (2012) Investigation of the Listeria monocytogenes Scott A acid tolerance response and associated physiological and phenotypic features via whole proteome analysis. J Proteome Res 11:2409–2426

    Article  CAS  PubMed  Google Scholar 

  • Brown GK, Otero LJ, LeGris M, Brown RM (1994) Pyruvate dehydrogenase deficiency. J Med Genet 31:875–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA (2010) Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics 73:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE Jr. Gelmann EP (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39:232–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronan JE Jr. Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  CAS  PubMed  Google Scholar 

  • de Ortiz Orue Lucana D, Wedderhoff I, Groves MR (2012) ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J Signal Transduct 2012:605905

    Google Scholar 

  • Duche O, Tremoulet F, Namane A, Labadie J, European Listeria Genome C (2002) A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett 215:183–188

    Article  CAS  PubMed  Google Scholar 

  • Dunny GM, Leonard BA (1997) Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol 51:527–564

    Article  CAS  PubMed  Google Scholar 

  • Durack J, Ross T, Bowman JP (2013) Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 8:e73603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  • Giotis ES, Muthaiyan A, Blair IS, Wilkinson BJ, McDowell DA (2008) Genomic and proteomic analysis of the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiol 8:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Ignatova M et al (2013) Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock. J Proteomics 79:13–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Cronan JE Jr (1992) The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 267:16841–16847

    CAS  PubMed  Google Scholar 

  • Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol Toxicol Pharmacol 153:175–190

    Article  Google Scholar 

  • Lynch M, Painter J, Woodruff R, Braden C, Centers for Disease C, Prevention (2006) Surveillance for foodborne-disease outbreaks—United States, 1998–2002. Morb Mortal Wkly Rep Surveill Summ 55:1–42

    Google Scholar 

  • Majerczyk CD et al (2010) Direct targets of CodY in Staphylococcus aureus. J Bacteriol 192:2861–2877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mead PS et al (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Phan-Thanh L, Gormon T (1997) Stress proteins in Listeria monocytogenes. Electrophoresis 18:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Pittman JR, Buntyn JO, Posadas G, Nanduri B, Pendarvis K, Donaldson JR (2014) Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes. J Proteome Res 13:1896–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383

    Article  CAS  PubMed  Google Scholar 

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  CAS  PubMed  Google Scholar 

  • Wollers S et al (2010) Iron–sulfur (Fe–S) cluster assembly: the SufBCD complex is a new type of Fe–S scaffold with a flavin redox cofactor. J Biol Chem 285:23331–23341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Hai-hong Wang, the School of Life Sciences, South China Agricultural University, for discussion and experimental helping in fatty acid analysis and critical reading of the manuscript. We also thank Prof. Jian-zhong Liu, the School of Life Sciences, SunYat-sen University, for helping in 2-DE experiments. This work was supported by the Joint Funds of Natural Science Foundation of China and Guangdong Province (No. U1031003) and NSFC (No. 30970123).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Lu.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Deng, QL., Chen, Mt. et al. Proteomics analysis of Listeria monocytogenes ATCC 19115 in response to simultaneous triple stresses. Arch Microbiol 197, 833–841 (2015). https://doi.org/10.1007/s00203-015-1116-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1116-1

Keywords

Navigation