Archives of Microbiology

, Volume 197, Issue 6, pp 753–759 | Cite as

Analysis of swine fecal microbiota at various growth stages

  • Jungman Kim
  • Son G. Nguyen
  • Robin B. Guevarra
  • Iljoo Lee
  • Tatsuya UnnoEmail author
Original Paper


Recent obesity studies in humans and rodents have suggested that host weight gain is significantly associated with energy harvesting efficiency which is regulated by gut microbiota. Antibiotic growth promoters have been banned as feed additives in many countries. In this study, we aimed to provide knowledge of swine fecal microbiota by analyzing bacterial 16S rRNA gene sequences. Our results showed that swine fecal bacterial composition varied at each growth stage. Bacteroidetes decreased as the swine gained weight and unclassified genera significantly increased at later growth stages. Operational taxonomic unit (OTU) distribution analysis showed that the bacterial community difference was most significant between growers and finishers, while analysis of shared OTUs indicated a greater proportion of common species between growers and finishers. The differential abundance test between growers and finishers detected that nearly half of the species were shared OTUs, suggesting that differential abundance of each bacterial species predominantly controls bacterial community differences. Although functions of these bacteria are yet to be identified, understanding differences in fecal microbiota between each growth stage will provide additional insights for further studies related to swine gut microbiota.


Antibiotics Fecal microbiota MiSeq Mothur Swine 



This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project PJ009782)” Rural Development Administration, Republic of Korea and the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. 2013R1A1A1008910).

Supplementary material

203_2015_1108_MOESM1_ESM.pptx (104 kb)
Supplementary material 1 (PPTX 103 kb)
203_2015_1108_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)


  1. Arnal ME, Zhang J, Messori S, Bosi P, Smidt H, Lalles JP (2014) Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult swine. PLoS One 9:e87967. doi: 10.1371/journal.pone.0087967 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Caporaso JG et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl 1):4516–4522. doi: 10.1073/pnas.1000080107 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Caporaso JG et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi: 10.1038/ismej.2012.8 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Casewell M, Friis C, Marco E, McMullin P, Phillips I (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161. doi: 10.1093/jac/dkg313 PubMedCrossRefGoogle Scholar
  5. Cole JR et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi: 10.1093/nar/gkn879 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6:183–194. doi: 10.1038/ismej.2011.74 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Donatin E, Drancourt M (2012) Optimized microbial DNA extraction from diarrheic stools. BMC Res Notes 5:702. doi: 10.1186/1756-0500-5-702 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32:1720–1724. doi: 10.1038/ijo.2008.155 CrossRefGoogle Scholar
  9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ferrand J, Patron K, Legrand-Frossi C, Frippiat JP, Merlin C, Alauzet C, Lozniewski A (2014) Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods 105:180–185. doi: 10.1016/j.mimet.2014.07.029 PubMedCrossRefGoogle Scholar
  11. Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–S13. doi: 10.1111/j.1753-4887.2012.00499.x PubMedCrossRefGoogle Scholar
  12. Paulson J, Pop M, Bravo H (2011) Metastats: an improved statistical method for analysis of metagenomic data Genome biology 12:1–17Google Scholar
  13. Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290. doi: 10.1111/j.1462-2920.2011.02550.x PubMedCrossRefGoogle Scholar
  14. Heinritz SN, Mosenthin R, Weiss E (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 26:191–209. doi: 10.1017/S0954422413000152 PubMedCrossRefGoogle Scholar
  15. Hijova E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358PubMedGoogle Scholar
  16. Iijima K, Asano S, Suzuki K, Ogata T, Kitagawa Y (2008) Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci. Biosci Biotechnol Biochem 72:2764–2766. doi: 10.1271/bbb.80297 PubMedCrossRefGoogle Scholar
  17. Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Nunez G (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329. doi: 10.1126/science.1222195 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kennedy K, Hall MW, Lynch MD, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol 80:5717–5722. doi: 10.1128/AEM.01451-14 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Konstantinov SR et al (2008) Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol 66:599–607. doi: 10.1111/j.1574-6941.2008.00517.x PubMedCrossRefGoogle Scholar
  20. Koren O et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480. doi: 10.1016/j.cell.2012.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi: 10.1128/AEM.01043-13 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. doi: 10.1111/j.1462-2920.2009.02051.x PubMedCrossRefGoogle Scholar
  23. Lalles JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68:323–332. doi: 10.1111/j.1753-4887.2010.00292.x PubMedCrossRefGoogle Scholar
  24. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. doi: 10.1038/4441022a PubMedCrossRefGoogle Scholar
  25. Li X, Yin J, Li D, Chen X, Zang J, Zhou X (2006) Dietary supplementation with zinc oxide increases Igf-I and Igf-I receptor gene expression in the small intestine of weanling piglets. J Nutr 136:1786–1791PubMedGoogle Scholar
  26. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:e120. doi: 10.1093/nar/gkn491 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 8:e53608. doi: 10.1371/journal.pone.0053608 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Pang X et al (2007) Inter-species transplantation of gut microbiota from human to pigs. ISME J 1:156–162. doi: 10.1038/ismej.2007.23 PubMedCrossRefGoogle Scholar
  29. Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi: 10.1093/nar/gks1219 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Rapp D, Waller J, Brightwell G, Muirhead RW (2010) Lyophilization prior to direct DNA extraction from bovine feces improves the quantification of Escherichia coli O157:H7 and Campylobacter jejuni. Appl Environ Microbiol 76:1686–1688. doi: 10.1128/AEM.01866-09 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Redondo LM, Chacana PA, Dominguez JE, Fernandez Miyakawa ME (2014) Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol 5:118. doi: 10.3389/fmicb.2014.00118 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Salipante SJ et al (2014) Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80:7583–7591. doi: 10.1128/AEM.02206-14 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Santacruz A et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92. doi: 10.1017/S0007114510000176 PubMedCrossRefGoogle Scholar
  34. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4:35. doi: 10.1186/2049-1891-4-35 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Thompson CL, Wang B, Holmes AJ (2008) The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J 2:739–748. doi: 10.1038/ismej.2008.29 PubMedCrossRefGoogle Scholar
  38. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. doi: 10.1038/nature11552 PubMedCrossRefGoogle Scholar
  39. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi: 10.1038/nature05414 PubMedCrossRefGoogle Scholar
  40. Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi: 10.1038/nature07540 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011) PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27:1159–1161. doi: 10.1093/bioinformatics/btr087 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Ponten T, Gupta R, Licht TR (2014) Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2:19. doi: 10.1186/2049-2618-2-19 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227–5236. doi: 10.1128/AEM.00592-09 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. doi: 10.1093/bioinformatics/btt593 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jungman Kim
    • 1
  • Son G. Nguyen
    • 1
    • 2
  • Robin B. Guevarra
    • 1
  • Iljoo Lee
    • 3
  • Tatsuya Unno
    • 1
    Email author
  1. 1.Faculty of Biotechnology, College of Applied Life Science, SARIJeju National UniversityJejuRepublic of Korea
  2. 2.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Darby Genetics Inc.AnseongRepublic of Korea

Personalised recommendations