Skip to main content

Advertisement

Log in

A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The anaerobic, acetogenic bacterium Acetobacterium woodii grows on hydrogen and carbon dioxide and uses the Wood–Ljungdahl pathway to fix carbon but also to synthesize ATP. The free energy change of acetogenesis from H2 + CO2 allows for synthesis of only a fraction of an ATP under environmental conditions, and A. woodii is clearly a paradigm for microbial life under extreme energy limitation. However, it was unknown how much energy is required to make ATP under these conditions. In the present study, we determined the phosphorylation potential in cells metabolizing three different acetogenic substrates. It accounts to 37.9 ± 1.3 kJ/mol ATP during acetogenesis from fructose, 32.1 ± 0.3 kJ/mol ATP during acetogenesis from H2 + CO2 and 30.2 ± 0.9 kJ/mol ATP during acetogenesis from CO, the lowest phosphorylation potential ever described. The physiological consequences in terms of energy conservation under extreme energy limitation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bar-Even A (2013) Does acetogenesis really require especially low reduction potential? Biochim Biophys Acta 1827:395–400

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2010) Biochemie, 6th edn. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blaut M, Gottschalk G (1984) Protonmotive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24:103–107

    Article  CAS  Google Scholar 

  • Boenigk R, Dürre P, Gottschalk G (1989) Carrier-mediated acetate transport in Acetobacterium woodii. Arch Microbiol 152:589–593

    Article  CAS  Google Scholar 

  • Borek E, Ryan A, Rockenbach J (1955) Nucleic acid metabolism in relation to the lysogenic phenomenon. J Bacteriol 69:460–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  PubMed  Google Scholar 

  • Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giersch C, Robinson SP (1987) Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts. Photosynth Res 14:211–227

    Article  CAS  PubMed  Google Scholar 

  • Guffanti AA, Bornstein RF, Krulwich TA (1981) Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus. Biochim Biophys Acta 635:619–630

    Article  CAS  PubMed  Google Scholar 

  • Hansen B, Bokranz M, Schönheit P, Kröger A (1988) ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16. Arch Microbiol 150:447–451

    Article  CAS  Google Scholar 

  • Harold FM, Spitz E (1975) Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis. J Bacteriol 122:266–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinonen JE, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  CAS  PubMed  Google Scholar 

  • Heise R (1992) Energiekonservierung in Acetobacterium woodii: Aufbau eines elektrochemischen Na+-Gradienten und Nutzung durch eine ATP-Synthase mit Na+ als Kopplungsion. Dissertation, Georg-August-Universität zu Göttingen

  • Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1993) Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol Lett 112:261–268

    Article  CAS  Google Scholar 

  • Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genom 15:1139

    Article  Google Scholar 

  • Imkamp F, Müller V (2002) Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol 184:1947–1951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1991) Adenine nucleotide content and energy charge of Methanothrix soehngenii during acetate degradation. FEMS Microbiol Lett 84:313–317

    Article  CAS  Google Scholar 

  • Kashket ER (1982) Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli. Biochemistry 21:5534–5538

    Article  CAS  PubMed  Google Scholar 

  • Kimmich GA, Randles J, Brand JS (1975) Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Anal Biochem 69:187–206

    Article  CAS  PubMed  Google Scholar 

  • Maloney PC (1983) Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis. J Bacteriol 153:1461–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin WF, Sousa FL, Lane N (2014) Evolution. Energy at life’s origin. Science 344:1092–1093

    Article  CAS  PubMed  Google Scholar 

  • Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gomez JD, Meier T (2014) High-resolution structure and mechanism of Na+-coupled F/V-hybrid ATP synthase rotor ring. Nat Commun 5:5286

    Article  PubMed Central  PubMed  Google Scholar 

  • Metelkin E, Demin O, Kovács Z, Chinopoulos C (2009) Modeling of ATP–ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS J 276:6942–6955

    Article  CAS  PubMed  Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 360–406

    Chapter  Google Scholar 

  • Müller-Esterl W (2004) Biochemie, 1st edn. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ragsdale SW (2008) Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt K, Liaanen-Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorodaceae. Arch Mikrobiol 46:117–126

    Article  CAS  PubMed  Google Scholar 

  • Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821

    Article  CAS  PubMed  Google Scholar 

  • Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases. J Bioenerg Biomembr 46:229–241

    Article  CAS  PubMed  Google Scholar 

  • Slater EC, Rosing J, Mol A (1973) The phosphorylation potential generated by respiring mitochondria. Biochim Biophys Acta 292:534–553

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace PG, Pedler SM, Wallace JC, Berry MN (1994) A method for the determination of the cellular phosphorylation potential and glycolytic intermediates in yeast. Anal Biochem 222:404–408

    Article  CAS  PubMed  Google Scholar 

  • Wood HG, Ljungdahl LG (1991) Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic press, San Diego, pp 201–250

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 807). We thank K. Schuchmann for critical reading and discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller.

Additional information

Communicated by Michael Rother.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spahn, S., Brandt, K. & Müller, V. A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Arch Microbiol 197, 745–751 (2015). https://doi.org/10.1007/s00203-015-1107-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1107-2

Keywords

Navigation