Archives of Microbiology

, Volume 197, Issue 4, pp 521–532 | Cite as

Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster

  • Fatoumata Tambadou
  • Thibault Caradec
  • Anne-Laure Gagez
  • Antoine Bonnet
  • Valérie Sopéna
  • Nicolas Bridiau
  • Valérie Thiéry
  • Sandrine Didelot
  • Cyrille Barthélémy
  • Romain ChevrotEmail author
Original Paper


Colistin is a mixture of polymyxin E1 and E2, bactericidal pentacationic lipopeptides used to treat infections caused by Gram-negative pathogens such as Pseudomonas aeruginosa and Klebsiella pneumoniae. Industrial production of colistin is obtained by a fermentation process of the natural producer Paenibacillus polymyxa var colistinus. NonRibosomal peptide synthetases (NRPS) coding the biosynthesis of polymyxins A, B and P have been recently described, rendering thereof the improvement of their production possible. However, the colistin biosynthesis pathway was not published so far. In this study, a Paenibacillus alvei has been identified by biochemical (Api 50 CH system) and molecular (16S rDNA sequencing) methods. Its culture supernatant displayed inhibitory activity against Gram-negative bacteria (P. aeruginosa, K. pneumoniae, Salmonella spp.). Two polymyxins, E1 and E2, were recovered from the supernatant and were characterized by high resolution LC–MS. A genomic library (960 clones) was constructed to identify the gene cluster responsible for biosynthesis of polymyxins. Selection of the clones harbouring the sequences of interest was obtained by a simple PCR-based screening. We used primers targeting NRPS sequences leading to the incorporation of amino acids present in polymyxins E. The sequences from three clones of interest were assembled on 50.4 kb. Thus, five open reading frames corresponding to a new NRPS gene cluster of 41 kb were identified. In silico, analyses revealed the presence of three NRPS implicated in the biosynthesis of polymyxins E. This work provides insightful information on colistin biosynthesis and might contribute to future drug developments in this group of antibiotics.


Paenibacillus Polymyxin Colistin NRPS Nonribosomal peptide 



We thank « l’Association Vaincre La Mucoviscidose » for their financial support.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bachmann BO, Ravel J (2009) In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol 458:181–217CrossRefPubMedGoogle Scholar
  3. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169CrossRefPubMedGoogle Scholar
  4. Benedict RG, Stodola FH (1949) Effect of various factors on the production of polymyxin. Ann N Y Acad Sci 51:866–874CrossRefPubMedGoogle Scholar
  5. Chevrot R, Carlotti A, Sopéna A, Marchant P, Rosenfeld E (2008) Megamonas rupellensis sp. nov., an anaerobe isolated from the caecum of a duck. Int J Syst Evol Microbiol 58:2921–2924CrossRefPubMedGoogle Scholar
  6. Chevrot R, Didelot S, Van den Bossche L, Tambadou F, Caradec T, Marchant P, Izquierdo E, Sopena V, Caillon J, Barthélémy C, Van Schepdael A, Hoogmartens J, Rosenfled E (2013) A novel depsipeptide produced by Paenibacillus alvei 32 isolated from a cystic fibrosis patient. Probiotics Antimicrob Proteins 5:18–25CrossRefGoogle Scholar
  7. Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cochrane SA, Vederas JC (2014) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev. doi: 10.1002/med.21321
  9. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183CrossRefPubMedCentralPubMedGoogle Scholar
  10. DeCrescenzo Henriksen E, Phillips DR, Peterson JB (2007) Polymyxin E production by P. amylolyticus. Lett Appl Microbiol 45:491–496CrossRefGoogle Scholar
  11. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York, p 451CrossRefGoogle Scholar
  12. Eliasson Lantz A, Jorgensen P, Poulsen E, Lindemann C, Olsson L (2006) Determination of cell mass and polymyxin using multi-wavelength fluorescence. J Biotechnol 121:544–554CrossRefPubMedGoogle Scholar
  13. Falagas ME, Kasiakou S (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 40:1333–1341CrossRefPubMedGoogle Scholar
  14. Falagas ME, Kasiakou S (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10:1–13CrossRefGoogle Scholar
  15. Falagas ME, Kasiakou S, Kofteridis D, Roditakis G, Samonis G (2006) Effectiveness and nephrotoxicity of intravenous colistin for treatment of patients with infections due to polymyxin-only-susceptible (POS) Gram-negative bacteria. Eur J Clin Microbiol Infect Dis 25:596–599CrossRefPubMedGoogle Scholar
  16. Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6:593–600CrossRefPubMedGoogle Scholar
  17. Govaerts C, Orwa J, Van Schepdael A, Roets E, Hoogmartens J (2002a) Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry. J Pept Sci 8:45–55CrossRefPubMedGoogle Scholar
  18. Govaerts C, Orwa J, Van Schepdael A, Roets E, Hoogmartens J (2002b) Liquid chromatography-ion trap tandem mass spectrometry for the characterization of polypeptide antibiotics of the colistin series in commercial samples. J Chromatogr A 976:65–78CrossRefPubMedGoogle Scholar
  19. Hong SY, Oh JE, Lee KH (1999) Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58:1775–1780CrossRefPubMedGoogle Scholar
  20. Kempf I, Fleury MA, Drider D, Bruneau M, Sanders P, Chauvin C, Madec JY, Jouy E (2013) What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int J Antimicrob Agents 5:379–383CrossRefGoogle Scholar
  21. Lee DL, Powers JP, Pflegerl K, Vasil ML, Hancock RE, Hodges RS (2004) Effects of single D-amino acid substitutions on disruption of beta-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. J Pept Res 63:69–84CrossRefPubMedCentralPubMedGoogle Scholar
  22. Li J, Beatty PK, Shah S, Jensen SE (2007) Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol 73:3480–3489CrossRefPubMedCentralPubMedGoogle Scholar
  23. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640CrossRefPubMedGoogle Scholar
  24. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674CrossRefPubMedGoogle Scholar
  25. Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of Mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278:13124–13132CrossRefPubMedGoogle Scholar
  26. Matar G, Chaar M, Araj G, Srour Z, Jamaleddine G, Hadi U (2005) Detection of a highly prevalent and potentially virulent strain of Pseudomonas aeruginosa from nosocomial infections in a medical center. BMC Microbiol 5:5–29CrossRefGoogle Scholar
  27. Naghmouchi K, Drider D, Baah J, Teather R (2010) Nisin A and polymyxin B as synergistic inhibitors of Gram-positive and Gram-negative bacteria. Probiotics Antimicrob Proteins 2:98–103CrossRefGoogle Scholar
  28. Naghmouchi K, Belguesmia Y, Baah J, Teather R, Drider D (2011) Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res Microbiol 162:99–107CrossRefPubMedGoogle Scholar
  29. Naghmouchi K, Hammami R, Fliss I, Teather R, Baah J, Drider D (2012) Colistin A and colistin B among inhibitory substances of Paenibacillus polymyxa JB05-01-1. Arch Microbiol 5:363–370CrossRefGoogle Scholar
  30. Naghmouchi K, Baah J, Hober D, Jouy E, Rubrecht C, Sané F, Drider D (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother 57:2719–2725CrossRefPubMedCentralPubMedGoogle Scholar
  31. Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, Mouton JW, Paterson DL, Tam VH, Theuretzbacher U, Tsuji BT, Turnidge JD (2014) Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis 14:70850–70853Google Scholar
  32. Newton BA (1956) The properties and mode of action of the polymyxins. Bacteriol Rev 20:14–27PubMedCentralPubMedGoogle Scholar
  33. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 137:1–13Google Scholar
  34. Olli S, Rangaraj N, Nagaraj R (2013) Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. PLoS One 9:1–10Google Scholar
  35. Orwa JA, Govaerts C, Gevers K, Roets E, Van Schepdael A, Hoogmartens J (2002) Study of the stability of polymyxins B1, E1 and E2 in aqueous solution using liquid chromatography and mass spectrometry. J Pharm Biomed Anal 29:203–212CrossRefPubMedGoogle Scholar
  36. Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133:215–218CrossRefPubMedGoogle Scholar
  37. Reynaldi FJ, De Giusti MR, Alippi AM (2004) Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Rev Argent Microbiol 36:52–55PubMedGoogle Scholar
  38. Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmaco 18:56–60CrossRefGoogle Scholar
  39. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:362–367CrossRefGoogle Scholar
  40. Sambrook JF, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, p 2100Google Scholar
  41. Sarkar S, DeSantis ER, Kuper J (2007) Resurgence of colistin use. Am J Health Syst Pharm 64:2462–2466CrossRefPubMedGoogle Scholar
  42. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287CrossRefPubMedGoogle Scholar
  43. Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18:1640–1648CrossRefPubMedGoogle Scholar
  44. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505CrossRefPubMedGoogle Scholar
  45. Stansly PG (1947) Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. Bacteriol 54:549–556Google Scholar
  46. Stansly PG (1949) The polymyxins: a review and assessment. Am J Med 7:807–818CrossRefPubMedGoogle Scholar
  47. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240CrossRefPubMedGoogle Scholar
  48. Tambadou F, Lanneluc I, Sablé S, Klein GL, Doghri I, Sopéna V, Didelot S, Barthélémy C, Thiéry V, Chevrot R (2014) Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. FEMS Microbiol Lett 357:123–130PubMedGoogle Scholar
  49. Tupinamba G, da Silva AJ, Alviano CS, Souto-Padron T, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053CrossRefPubMedGoogle Scholar
  50. Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, Frimodt-Moller N, Nagai J, Takano M, Vaara T (2008) Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother 52:3229–3236CrossRefPubMedCentralPubMedGoogle Scholar
  51. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916CrossRefPubMedCentralPubMedGoogle Scholar
  52. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724CrossRefPubMedGoogle Scholar
  53. Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem Biol 16:1172–1177CrossRefGoogle Scholar
  54. Vogler K, Studer RO (1966) The chemistry of the polymyxin antibiotics. Experientia 22:345–354CrossRefPubMedGoogle Scholar
  55. Wilkinson S, Lowe LA (1966) Structures of the polymyxins A and the question of identity with the polymyxins M. Nature. doi: 10.1038/212311a0 Google Scholar
  56. Yoneyama H, Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 70:1060–1075CrossRefPubMedGoogle Scholar
  57. Yuan Z, Tam VH (2008) Polymyxin B: a new strategy for multidrug-resistant Gram-negative organisms. Expert Opin Investig Drugs 17:661–668CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fatoumata Tambadou
    • 1
  • Thibault Caradec
    • 2
  • Anne-Laure Gagez
    • 1
  • Antoine Bonnet
    • 1
  • Valérie Sopéna
    • 1
  • Nicolas Bridiau
    • 1
  • Valérie Thiéry
    • 1
  • Sandrine Didelot
    • 1
  • Cyrille Barthélémy
    • 1
  • Romain Chevrot
    • 1
    Email author
  1. 1.Laboratoire Littoral Environnement et Sociétés, LIENSs - UMR 7266 - CNRSUniversité de La RochelleLa Rochelle Cedex 1France
  2. 2.Laboratoire ProBioGemUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations