Skip to main content
Log in

Variation in swimming speed of Escherichia coli in response to attractant

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

It is well known that Escherichia coli executes chemotactic motion in response to chemical cues by modulating the flagellar motor bias alone. However, previous studies have reported the possibility of variation in run speed in the presence of attractants although it is unclear whether bacteria can deliberately modulate their swimming speeds in response to environmental cues or if the motor speeds are hardwired. By studying the detailed motion of cells in a uniform concentration of glucose and its non-metabolizable analogue, we show that changing concentrations may be accompanied by variation in the swimming speed. For a fixed run duration, cells exposed to the attractants achieved a higher peak-swimming speed after a tumble compared with that in plain motility buffer. Our experiments using the mutant strain lacking the Trg sensor show no change in swimming speed with varying concentrations of the non-metabolizable analogue, suggesting that sensing may play a role in the observed variation of swimming speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  CAS  PubMed  Google Scholar 

  • Adler J, Epstein W (1974) Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 71:2895–2899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adler J, Hazelbauer G, Dahl M (1973) Chemotaxis toward sugars in Escherichia coli. J Bacteriol 115:824–847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed T, Stocker R (2008) Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Biophys J 95(9):4481–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. Garland Science, Oxford

    Google Scholar 

  • Alon U, Camarena L, Surette MG, Arcas BA, Liu Y, Leibler S, Stock JB (1998) Response regulator output in bacterial chemotaxis. EMBO J 17:4238–4248

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker MD, Wolanin P, Stock J (2006) Signal transduction in bacterial chemotaxis. BioEssays 28(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Berg H, Brown D (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:502–507

    Article  Google Scholar 

  • Berg H, Tedesco P (1975) Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci USA 72:3235–3239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg HC (2004) E. coli in motion. Springer, New York

    Google Scholar 

  • Berg HC, Turner L (1990) Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys J 58:919–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Block S, Segall J, Berg H (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154:312–323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boehm A, Kaiser M, Li H, Spangler C, Kasper C, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger mediated adjustment of bacterial swimming velocity. Cell 141:107–116

    Article  CAS  PubMed  Google Scholar 

  • Clarke S, Koshland D (1979) Membrane receptors for aspartate and serine in bacterial chemotaxis. J Biol Chem 254:9695–9702

    CAS  PubMed  Google Scholar 

  • Demir M, Salman H (2012) Bacterial thermotaxis by speed modulation. Biophysical J 103:1683–1690

    Article  CAS  Google Scholar 

  • Eisenbach M (2004) Chemotaxis. Imperial college press, London

    Book  Google Scholar 

  • Eisenbach M, Wolf A, Welch M, Caplan S, Lapidus I, Macnab R, Aloni H, Asher O (1990) Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J Mol Biol 211:551–563

    Article  CAS  PubMed  Google Scholar 

  • Engstrom P, Hazelbauer G (1980) Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of Escherichia coli to chemical stimuli. Cell 20:165–171

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Lilly A, Hazelbauer G (1999) Enhanced function conferred on low-abundance chemoreceptor trg by a methyltransferase-docking site. J Bacteriol 181:31643171

    Google Scholar 

  • Foster D, Mowbray S, Jap B, Koshland D (1985) Purification and characterization of the aspartate chemoreceptor. J Biol Chem 260:11706–11710

    CAS  PubMed  Google Scholar 

  • Gabel C, Berg H (2003) The speed of the flagellar rotary motor of Escherichia coli varies linearly with proton motive force. Proc Natl Acad Sci USA 15:8748–8751

    Article  Google Scholar 

  • Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli k-12 strains mg1655 and w3110. Mol Syst Biol 2(2007):1–5

    Google Scholar 

  • Hazelbauer G, Engstrom P (1980) Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 283:98–100

    Article  CAS  PubMed  Google Scholar 

  • Hyon Y, Marcos, Powers T, Stocker R, Fu H (2012) The wiggling trajectories of bacteria. J Fluid Mech 705:58–76

    Article  Google Scholar 

  • Kalinin Y, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophy J 96:2439–2448

    Article  CAS  Google Scholar 

  • Krell T, Lacal J, Muoz-Martnez F, Reyes-Darias JA, Cadirci B, Garca-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13(5):11151124

    Article  Google Scholar 

  • Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hazelbauer G (2005) Adaptational assistance in clusters of bacterial chemoreceptors. Mol Microbiol 56:16171626

    Article  Google Scholar 

  • Liu Z, Papadopoulos K (1995) Unidirectional motility of Escherichia coli in restrictive capillaries. Appl Environ Microbiol 61(10):35673572

    Google Scholar 

  • Liu Z, Papadopoulos K (1996) A method for measuring bacterial chemotaxis parameters in a microcapillary. Biotechnol Bioeng 51(1):120125

    Google Scholar 

  • Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci USA 92(11):58311,587

    Google Scholar 

  • Macnab R, Koshland D (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci USA 69:2509–2512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masson JB, Voisinne G, Wong-Nga J, Celania A, Vergassola M (2012) Noninvasive inference of the molecular chemotactic response using bacterial trajectories. Proc Natl Acad Sci USA 109:1802–1807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min T, Mears P, Chubiz L, Rao C, Golding I, Chemla Y (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min TL, Mears PJ, Golding I, Chemla YR (2012) Chemotactic adaptation kinetics of individual Escherichia coli cells. Proc Natl Acad Sci USA 109:9869–9874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann S, Grosse K, Sourjik V (2012) Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci USA 109:12159–12164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivero M, Tranquillo R, Buettner H, Lauffenburger D (1989) Transport models for chemotactic cell populations based on individual cell behaviour. Chem Eng Sci 44(12):2881–2897

    Article  Google Scholar 

  • Rowsell EH, Smith JM, Wolfe A, Taylor B (1995) CheA, CheW, and CheY are required for chemotaxis to oxygen and sugars of the phosphotransferase system in Escherichia coli. J Bacteriol 20:6011–4

    Google Scholar 

  • Russo A, Koshland D (1983) Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 220:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci USA 108:16235–16240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saragosti J, Silberzan P, Buguin A (2012) Modeling E. coli tumbles by rotational diffusion: implications for chemotaxis. PLOS ONE 7(e35):412

    Google Scholar 

  • Sourjik V, Berg H (2002) Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci USA 99:123–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viladsen J, Nielsen J, Liden G (2011) Bioreaction engineering principles. Springer, New York

    Book  Google Scholar 

  • Vuppala RV, Tirumkudulu MS, Venkatesh KV (2010a) Chemotaxis of Escherichia coli to l-serine. Phys Biol 7(026):007

    Google Scholar 

  • Vuppala RV, Tirumkudulu MS, Venkatesh KV (2010b) Mathematical modeling and experimental validation of chemotaxis under controlled gradients of methyl-aspartate in Escherichia coli. Mol Biosyst 6:1082–1092

    Article  Google Scholar 

  • Wadhams G, Armitage J (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Wolff C, Parkinson J (1988) Aspartate taxis mutants of the Escherichia coli tar chemoreceptor. J Bacteriol 170:4509–4515

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Department of Science and Technology, India. MST also acknowledges support from the Swaranajayanti Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh S. Tirumkudulu.

Additional information

Communicated by Erko Stackebrandt.

Deepti Deepika and Richa Karmakar have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 279 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, D., Karmakar, R., Tirumkudulu, M.S. et al. Variation in swimming speed of Escherichia coli in response to attractant. Arch Microbiol 197, 211–222 (2015). https://doi.org/10.1007/s00203-014-1044-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1044-5

Keywords

Navigation