Skip to main content

Advertisement

Log in

Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l−1 sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0–53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahn SJ, Wen ZT, Burne RA (2007) Effects of oxygen on virulence traits of Streptococcus mutans. J Bacteriol 189:8519–8527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Biel MA (2010) Photodynamic therapy of bacterial and fungal biofilm infections. Methods Mol Biol 635:175–194

    Article  PubMed  CAS  Google Scholar 

  • Bolstad AI, Jensen HB, Bakken V (1996) Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev 9:55–71

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bowden GH (1999) Controlled environment model for accumulation of biofilms of oral bacteria. Methods Enzymol 310:216–224

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw DJ, Marsh PD, Watson GK, Allison C (1997) Oral anaerobes cannot survive oxygen stress without interacting with facultative/aerobic Species as a microbial community. Lett Appl Microbiol 25:385–387

    Article  CAS  Google Scholar 

  • Busscher HJ, van der Mei HC (1997) Physico–chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32

    Article  PubMed  CAS  Google Scholar 

  • Chavez de Paz LE, Hamilton IR, Svensater G (2008) Oral bacteria in biofilms exhibit slow reactivation from nutrient deprivation. Microbiology 154(Pt 7):1927–1938

    Article  PubMed  CAS  Google Scholar 

  • Colombo AP, Teles RP, Torres MC, Souto R, Rosalem WJ, Mendes MC, Uzeda M (2002) Subgingival microbiota of Brazilian subjects with untreated chronic periodontitis. J Periodontol 73:360–369

    Article  PubMed  Google Scholar 

  • Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE (1994) Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38:2803–2809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng DM, Buijs MJ, Ten Cate JM (2004) The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2 % chlorhexidine. Eur J Oral Sci 112:42–47

    Article  PubMed  CAS  Google Scholar 

  • Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B (2009) Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155:2116–2126

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    PubMed  CAS  Google Scholar 

  • Fonseca MB, Junior PO, Pallota RC, Filho HF, Denardin OV, Rapoport A, Dedivitis RA, Veronezi JF, Genovese WJ, Ricardo AL (2008) Photodynamic therapy for root canals infected with Enterococcus faecalis. Photomed Laser Surg 26:209–213

    Article  PubMed  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ (1996) Role of adhesion in microbial colonization of host tissues: a contribution of oral microbiology. J Dent Res 75:866–870

    Article  PubMed  CAS  Google Scholar 

  • Guggenheim B, Giertsen E, Schupbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370

    Article  PubMed  CAS  Google Scholar 

  • Guggenheim B, Guggenheim M, Gmur R, Giertsen E, Thurnheer T (2004) Application of the Zurich biofilm model to problems of cariology. Caries Res 38:212–222

    Article  PubMed  Google Scholar 

  • Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64

    PubMed  CAS  Google Scholar 

  • Heikens E, Bonten MJ, Willems RJ (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hellstrom MK, Ramberg P, Krok L, Lindhe J (1996) The effect of supragingival plaque control on the subgingival microflora in human periodontitis. J Clin Periodontol 23:934–940

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Flannagan SE, Sedgley CM (2006) Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis. J Endod 32:946–950

    Article  PubMed  Google Scholar 

  • Keijser BJ, Zaura E, Huse SM, van dV, Schuren FH, Montijn RC, Ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Kilian M, Larsen MJ, Fejerskov O, Thylstrup A (1979) Effects of fluoride on the initial colonization of teeth in vivo. Caries Res 13:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI (2006) Bacterial interactions and successions during plaque development. Periodontol 2000 42:47–79

    Article  PubMed  Google Scholar 

  • Kolenbrander PE, Andersen RN, Moore LV (1989) Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 57:3194–3203

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol 8:471–480

    Article  PubMed  CAS  Google Scholar 

  • Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socransky SS, Oppenheim FG (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Maisch T, Wagner J, Papastamou V, Nerl HJ, Hiller KA, Szeimies RM, Schmalz G (2009) Combination of 10 % EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro. J Appl Microbiol 107:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15

    Article  PubMed  CAS  Google Scholar 

  • Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15:169–175

    Article  PubMed  CAS  Google Scholar 

  • Marsh PD, Martin MV (1992) Oral mircrobiology. Chapman & Hall, London

    Book  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neu TR, Lawrence JR (1999) Lectin-binding analysis in biofilm systems 310:145–152

    CAS  Google Scholar 

  • Nocker A, Camper AK (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997–2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310–320

    Article  PubMed  CAS  Google Scholar 

  • Nyvad B, Kilian M (1987) Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:369–380

    PubMed  CAS  Google Scholar 

  • Okte E, Sultan N, Dogan B, Asikainen S (1999) Bacterial adhesion of Actinobacillus actinomycetemcomitans serotypes to titanium implants: SEM evaluation. A preliminary report. J Periodontol 70:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Penas PP, Mayer MP, Gomes BP, Endo M, Pignatari AC, Bauab KC, Pinheiro ET (2013) Analysis of genetic lineages and their correlation with virulence genes in Enterococcus faecalis clinical isolates from root canal and systemic infections. J Endod 39:858–864

    Article  PubMed  Google Scholar 

  • Periasamy S, Kolenbrander PE (2009a) Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun 77:3542–3551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Periasamy S, Kolenbrander PE (2009b) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol 191:6804–6811

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pisz JM, Lawrence JR, Schafer AN, Siciliano SD (2007) Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide. J Microbiol Methods 71:312–318

    Article  PubMed  CAS  Google Scholar 

  • Pratten J, Wills K, Barnett P, Wilson M (1998) ) In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. J Appl Microbiol 84(6):1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Pratten J, Wilson M, Spratt DA (2003) Characterization of in vitro oral bacterial biofilms by traditional and molecular methods 5. Oral Microbiol Immunol 18:45–49

    Article  PubMed  CAS  Google Scholar 

  • Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 22:1–14

    Article  PubMed  CAS  Google Scholar 

  • Regensburger J, Maisch T, Felgentrager A, Santarelli F, Baumler W (2010) A helpful technology—the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). J Biophotonics 3:319–327

    Article  PubMed  CAS  Google Scholar 

  • Romani AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric matrix enzymes during biofilm formation. Microb Ecol 56:427–436

    Article  PubMed  CAS  Google Scholar 

  • Roth KA, Friedman S, Levesque CM, Basrani BR, Finer Y (2012) Microbial biofilm proliferation within sealer-root dentin interfaces is affected by sealer type and aging period. J Endod 38:1253–1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Rueckert A, Ronimus RS, Morgan HW (2005) Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. J Appl Microbiol 99:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury AL, Bird PS, Walsh LJ (2009) DIAGNOdent laser fluorescence assessment of endodontic infection. J Endod 35:1404–1407

    Article  PubMed  Google Scholar 

  • Sanchez MC, Llama-Palacios A, Blanc V, Leon R, Herrera D, Sanz M (2011) Structure. viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota J Periodontal Res 46:252–260

    CAS  Google Scholar 

  • Sela MN, Badihi L, Rosen G, Steinberg D, Kohavi D (2007) Adsorption of human plasma proteins to modified titanium surfaces. Clin Oral Implants Res 18:630–638

    Article  PubMed  Google Scholar 

  • Shellis RP (1978) A synthetic saliva for cultural studies of dental plaque. Arch Oral Biol 23:485–489

    Article  PubMed  CAS  Google Scholar 

  • Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40:41–47

    Article  PubMed  CAS  Google Scholar 

  • Simmonds RS, Tompkins GR, George RJ (2000) Dental caries and the microbial ecology of dental plaque: a review of recent advances. N Z Dent J 96:44–49

    PubMed  CAS  Google Scholar 

  • Souto R, Colombo AP (2008) Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch Oral Biol 53:155–160

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  PubMed  CAS  Google Scholar 

  • Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C (2012) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17(3):841–850

  • Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N (2004) Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72:6032–6039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wecke J, Kersten T, Madela K, Moter A, Gobel UB, Friedmann A, Bernimoulin J (2000) A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets 2. FEMS Microbiol Lett 191:95–101

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Zhang C, Chu C (2012) Effectiveness of photoactivated disinfection (PAD) to kill enterococcus faecalis in planktonic solution and in an infected tooth model. Photomed Laser Surg 30:699–704

    Article  PubMed  CAS  Google Scholar 

  • Zaura-Arite E, van MJ, Ten Cate JM (2001) Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80:1436–1440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Udo Reischl for his support regarding real-time PCR (Department of Microbiology and Hygiene, University of Regensburg, Germany). The authors thank Dr Fabian Cieplik (Department of Restorative Dentistry and Periodontology, University Medical Center, Regensburg) for scientific discussions. The editorial assistance of Ms. Monika Schoell is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maisch.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabenski, L., Maisch, T., Santarelli, F. et al. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model. Arch Microbiol 196, 819–828 (2014). https://doi.org/10.1007/s00203-014-1021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1021-z

Keywords