Skip to main content
Log in

Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the combined effect of probiotic Lactobacillus rhamnosus and bacteriophage SA11 on the control of antibiotic-sensitive Staphylococcus aureus (ASSA) and antibiotic-resistant S. aureus (ARSA) under the simulated intestinal conditions. The survivability of ASSA and ARSA were determined in the simulated phosphate-buffered saline (PBS)-, trypticase soy broth (TSB)-, and milk-based gastric juices adjusted to pH 2.0, 3.0, and 5.0 at 37 °C for 30 min. The inhibitory effect of bacteriophage SA11 and probiotic on the growth of ASSA and ARSA was evaluated in the simulated intestinal juices at 37 °C for 20 h. The least reductions in the numbers of ASSA and ARSA were observed in the milk-based gastric juices at pH 2.0 (<1 log). No significant changes in the teichoic acid-mediated sliding motility were observed for ASSA and ARSA after 30-min exposure to the simulated gastric juices (pH 2.0, 3.0, and 5.0), responsible for the enhanced bacterial attachment to the epithelial cells. The bacteriophage SA11 was stable down to pH 5.0 and up to 0.06 % bile salts. The bacteriophage SA11 combined with probiotic effectively inhibited the growth of ASSA and ARSA in the simulated intestinal conditions, showing more than 4 log reduction. The relative expression levels of adhesion-related genes (clfA, eno, and fnbA) and efflux-related genes (mdeA, norB, and norC) were less decreased in ARSA than in ASSA after exposure to the simulated gastrointestinal conditions. These results might shed light on the application of bacteriophage to control the ingested antibiotic-resistant foodborne pathogens in the intestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ et al (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73:4543–4549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bardina C, Spricigo DA, Cortes P, Llagostera M (2012) Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol 78:6600–6607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barmpalia-Davis IM, Geornaras I, Kendall PA, Sofos JN (2008) Differences in survival among 13 Listeria monocytogenes strains in a dynamic model of the stomach and small intestine. Appl Environ Microbiol 74:5563–5567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhalla A, Aron D, Donskey C (2007) Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients. BMC Infect Dis 7:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleackley J, Cooper J, Kaminski M, Sandilands S (2009) The reduction of T7 phage adsorption in Escherichia coli B23 cells treated with sub-lethal levels of kanamycin. J Exp Microbiol Immunol 13:89–92

    Google Scholar 

  • Bourlioux P, Koletzko B, Guarner F, Braesco V (2003) The intestine and its microflora are partners for the protection of the host. Am J Clin Nutr 78:675–683

    PubMed  CAS  Google Scholar 

  • Ceuppens S, Uyttendaele M, Hamelink S, Boon N, Van de Wiele T (2012) Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathog 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow MS, Rouf MA (1983) Isolation and partial characterization of two Aeromonas hydrophila bacteriophages. Appl Environ Microbiol 45:1670–1676

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45:454–460

    Article  PubMed  CAS  Google Scholar 

  • DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TAA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51:3235–3239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foster JW (2001) Acid stress response of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis. J Microbiol 39:89–94

    CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  PubMed  CAS  Google Scholar 

  • Greenacre EJ, Lucchini S, Hinton JCD, Brocklehurst TF (2006) The lactic acid-induced acid tolerance response in Salmonella enterica Serovar Typhimurium induces sensitivity to hydrogen peroxide. Appl Environ Microbiol 72:5623–5625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hammad AM, Shimamoto T (2010) Towards a compatible probiotic-antibiotic combination therapy: assessment of antimicrobial resistance in the Japanese probiotics. J Appl Microbiol 109:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Huang J et al (2004) Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 48:909–917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaito C, Sekimizu K (2007) Colony spreading in Staphylococcus aureus. J Bacteriol 189:2553–2557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim MS, Myung H (2012) Complete genome of Staphylococcus aureus phage SA11. J Virol 86:10232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koseki S, Mizuno Y, Sotome I (2011) Modeling of pathogen survival during simulated gastric digestion. Appl Environ Microbiol 77:1021–1032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lei MG, Cue D, Roux CM, Dunman PM, Lee CY (2011) Rsp inhibits attachment and biofilm formation by repressing fnbA in Staphylococcus aureus MW2. J Bacteriol 193:5231–5241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria–a review. Int J Food Microbiol 105:281–295

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki S et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  • Muller-Merbacha M, Kohler K, Hinrichs J (2007) Environmental factors for phage-induced fermentation problems: replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiol 24:695–702

    Article  Google Scholar 

  • Nemati M, Hermans K, Devriese LA, Maes D, Haesebrouck F (2009) Screening of genes encoding adhesion factors and biofilm formation in Staphylococcus aureus isolates from poultry. Avian Pathol 38:513–517

    Article  PubMed  CAS  Google Scholar 

  • O’Connell DP, Nanavaty T, McDevitt D, Gurusiddappa S, Höök M, Foster TJ (1998) The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. J Biol Chem 273:6821–6829

    Article  PubMed  Google Scholar 

  • Oelschlaeger TA (2010) Mechanisms of probiotic actions - A review. Int J Med Microbiol 300:57–62

    Article  PubMed  CAS  Google Scholar 

  • Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira P (2009) Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol 26:278–282

    Article  PubMed  CAS  Google Scholar 

  • Servin AL, Coconnier MH (2003) Adhesive of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    Article  PubMed  CAS  Google Scholar 

  • Smith JL (2003) The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 66:1292–1303

    PubMed  Google Scholar 

  • Stutz K, Stephan R, Tasara T (2011) SpA, ClfA, and FnbA genetic variations lead to staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J Clin Microbiol 49:638–646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Truong-Bolduc QC et al. (2011) Implication of the norB efflux pump in the adaptation of S. aureus to growth at acid pH and resistance to moxifloxacin. Antimicrob Agents Chemother:AAC.00289-00211

  • Vancraeynest D, Hermans K, Haesebrouck F (2004) Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Vet Microbiol 103:241–247

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Sozzi T, Turroni F, Matteuzzi D, Sinderen D (2011) The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. Genes & Nutrition 6:205–207

    Article  Google Scholar 

  • Vesterlund S, Karp M, Salminen S, Ouwehand AC (2006) Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152:1819–1826

    Article  PubMed  CAS  Google Scholar 

  • Woo J, Ahn J (2013) Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Lett Appl Microbiol 56:307–313

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Lee HY, Ahn J (2008) Cross-protective effect of acid-adapted Salmonella enterica on resistance to lethal acid and cold stress conditions. Lett Appl Microbiol 47:290–297

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Hart CA, Sales D, Roberts NB (2006) Bacterial killing in gastric juice—effect of pH and pepsin on Escherichia coli and Helicobacter pylori. J Med Microbiol 55:1265–1270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhee Ahn.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J., Ahn, J. Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol 196, 719–727 (2014). https://doi.org/10.1007/s00203-014-1013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1013-z

Keywords

Navigation