Advertisement

Archives of Microbiology

, Volume 196, Issue 7, pp 481–488 | Cite as

Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy

  • C. Valverde-Tercedor
  • F. Abadía-Molina
  • M. Martinez-Bueno
  • Estela Pineda-Molina
  • Lijun Chen
  • Zachery Oestreicher
  • Brian H. Lower
  • Steven K. Lower
  • Dennis A. Bazylinski
  • C. Jimenez-LopezEmail author
Original Paper

Abstract

Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.

Keywords

Magnetosome Magnetotactic bacteria MamC Magnetococus marinus 

Notes

Acknowledgments

This work was supported by Grant CGL2007-63859 and CGL2010-18274 from the Ministerio de Educación, Cultura y Deporte (Spain). B.H.L. and S.K.L. thank Grants EAR-0920299, EAR-0525297, EAR-0745808 from the U.S. National Science Foundation (NSF). D.A.B. is supported by U.S. NSF Grant EAR-0920718 and by SC-12-384 (U.S. DOE C02-07CH11358, Ames Laboratory at Iowa State University). We thank “La Factoría de Cristalización” (Granada) and LEC personnel (IACT, CSIC-UGR) for their assistance in protein expression and purification and also the CIC personnel from the University of Granada for TEM analyses and sample preparation. E.P.M. is supported by “Ramón y Cajal” research contract (MICINN). We thank an anonymous reviewer for their comments that have greatly improved this paper.

References

  1. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389PubMedCrossRefGoogle Scholar
  2. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750PubMedCrossRefGoogle Scholar
  3. Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999PubMedCentralPubMedCrossRefGoogle Scholar
  4. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32CrossRefGoogle Scholar
  5. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230PubMedCrossRefGoogle Scholar
  6. Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401PubMedCrossRefGoogle Scholar
  7. Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL, Bowser SS, Dean AJ, Beveridge TJ (2013) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov.; Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol 63:801–808PubMedCrossRefGoogle Scholar
  8. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898PubMedCrossRefGoogle Scholar
  9. Frankel RB, Blakemore RP (1980) Navigational compass in magnetic bacteria. J Magn Magn Mater 15:1562–1564CrossRefGoogle Scholar
  10. Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841PubMedCentralPubMedGoogle Scholar
  11. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582PubMedCentralPubMedCrossRefGoogle Scholar
  12. Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050PubMedCentralPubMedCrossRefGoogle Scholar
  13. Henzel WJ, Watanabe C, Stults JT (2003) Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom 14:931–942PubMedCrossRefGoogle Scholar
  14. Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res Biogeosci 115:1–19CrossRefGoogle Scholar
  15. Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255PubMedCentralPubMedCrossRefGoogle Scholar
  16. Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245PubMedCrossRefGoogle Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  18. Lang C, Schüler D (2008) Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl Environ Microbiol 74:4944–4953PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lower BH, Bazylinski DA (2013) The bacterial magnetosome: a unique prokaryotic organelle. J Mol Microbiol Biotechnol 23:63–80PubMedCrossRefGoogle Scholar
  20. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  21. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2007) Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal Biochem 366:102–104PubMedCrossRefGoogle Scholar
  22. Matsunaga T, Tsujimura N, Okamura H, Takeyama H (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Commun 268:932–937PubMedCrossRefGoogle Scholar
  23. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166PubMedCrossRefGoogle Scholar
  24. Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993a) Electron microscope study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc Lond B Biol Sci 251:231–236CrossRefGoogle Scholar
  25. Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993b) Electron-microscopy study of magnetosomes in 2 cultured vibrioid magnetotactic bacteria. Proc R Soc Lond B Biol Sci 251:237–242CrossRefGoogle Scholar
  26. Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102PubMedCrossRefGoogle Scholar
  27. Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957CrossRefGoogle Scholar
  28. Scheffel A, Gruska M, Faivre D, Linaroudis A, Graumann PL, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114PubMedCrossRefGoogle Scholar
  29. Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190:377–386PubMedCentralPubMedCrossRefGoogle Scholar
  30. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234PubMedCrossRefGoogle Scholar
  32. Taoka A, Asada R, Sasaki H, Anzawa K, Wu L-F, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812PubMedCentralPubMedCrossRefGoogle Scholar
  33. Thomas LA, Dekker L, Kallumadil M, Southern P, Wilson M, Nair SP, Pankhurst QA, Parkin IP (2009) Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem 19:6529–6535CrossRefGoogle Scholar
  34. Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081PubMedCrossRefGoogle Scholar
  35. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCentralPubMedCrossRefGoogle Scholar
  36. Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329PubMedCentralPubMedCrossRefGoogle Scholar
  37. Yamamoto D, Taoka A, Uchihashi T, Sasaki H, Watanabe H, Ando T, Fukumori Y (2010) Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc Natl Acad Sci USA 107:9382–9387PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Valverde-Tercedor
    • 1
  • F. Abadía-Molina
    • 2
  • M. Martinez-Bueno
    • 1
  • Estela Pineda-Molina
    • 3
  • Lijun Chen
    • 4
  • Zachery Oestreicher
    • 4
  • Brian H. Lower
    • 4
  • Steven K. Lower
    • 4
  • Dennis A. Bazylinski
    • 5
  • C. Jimenez-Lopez
    • 1
    Email author
  1. 1.Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biología celular, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR)GranadaSpain
  4. 4.The Ohio State UniversityColumbusUSA
  5. 5.School of Life SciencesUniversity of Nevada at Las VegasLas VegasUSA

Personalised recommendations