Skip to main content
Log in

Genetic diversity of Microcystis cyanophages in two different freshwater environments

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophages rapidly diversify their genes through co-evolution with their hosts. We hypothesize that gene diversification of phages leads to locality in phages genome. To test this hypothesis, we investigated the genetic diversity and composition of Microcystis cyanophages using 104 sequences of Ma-LMM01-type cyanophages from two geographically distant sampling sites. The intergenetic region between the ribonucleotide reductase genes nrdA and nrdB was used as the genetic marker. This region contains the host-derived auxiliary metabolic genes nblA, an unknown function gene g04, and RNA ligase gene g03. The sequences obtained were conserved in the Ma-LMM01 gene order and contents. Although the genetic diversity of the sequences was high, it varied by gene. The genetic diversity of nblA was the lowest, suggesting that nblA is a highly significant gene that does not allow mutation. In contrast, g03 sequences had many point mutations. RNA ligase is involved in the counter-host’s phage defense mechanism, suggesting that phage defense also plays an important role for rapid gene diversification. The maximum parsimony network and phylogenic analysis showed the sequences from the two sampling sites were distinct. These findings suggest Ma-LMM01-type phages rapidly diversify their genomes through co-evolution with hosts in each location and eventually provided locality of their genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bellec L, Grimsley N, Derelle E, Moreau H, Desdevises Y (2010) Abundance, spatial distribution and genetic diversity of Ostreococcus tauri viruses in two different environments. Environ Microbiol Rep 2:313–321

    Article  CAS  PubMed  Google Scholar 

  • Brockhurst MA, Morgan AD, Fenton A, Buckling A (2007) Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens: phi 2 model system. Infec Genet Evol 7:547–552

    Article  CAS  Google Scholar 

  • Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Codd G, Lindsay J, Young F, Morrison L, Metcalf J (2005) Harmful cyanobacteria. In: Huisman J, Matthijis HCP, Visser PM (eds) Cyanobacterial toxins. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Colwell RK (2004) Estimates: statistical estimation of species richness and shared species from samples. Version 8. http://viceroy.eeb.uconn.edu/estimates

  • Dwivedi B, Xue B, Lundin D, Edwards RA, Breitbart M (2013) A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol 13:33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Omari K, Ren J, Bird LE, Bona MK, Klarmann G, LeGrice SFJ, Stammers DK (2006) Molecular architecture and ligand recognition determinants for T4 RNA ligase. J Biol Chem 281:1573–1579

    Article  PubMed  Google Scholar 

  • Gaevsky NA, Kolmakov VI, Belykh OI, Tikhonova IV, Joung Y, Ahn TS, Nabatova VA, Gladkikh AS (2011) Ecological development and genetic diversity of Microcystis aeruginosa from artificial reservoir in Russia. J Microbiol 49:714–720

    Article  PubMed  Google Scholar 

  • Gao EB, Gui J-F, Zhang Q-Y (2012) A novel cyanophage with a cyanobacterial nonbleaching protein a gene in the genome. J Virol 86:236–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hargreaves KR, Anderson NJ, Clokie MR (2013) Recovery of viable cyanophages from the sediments of a eutrophic lake at decadal timescales. FEMS Microbiol Ecol 83:450–456

    Article  CAS  PubMed  Google Scholar 

  • Ho CK, Wang LK, Lima CD, Shuman S (2004) Structure and mechanism of RNA ligase. Structure 12:327–339

    Article  CAS  PubMed  Google Scholar 

  • Honjo M, Matsui K, Ueki M, Nakamura R, Fuhrman JA, Kawabata Z (2006) Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond. J Plankton Res 28:407–412

    Article  Google Scholar 

  • Ignacio-Espinoza JC, Sullivan MB (2012) Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol 14:2113–2126

    Article  CAS  PubMed  Google Scholar 

  • Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV (2013) Evolutionary dynamics of archaeal and bacterial adaptive immunity systems, CRISPR–Cas, in an explicit ecological context. J Bacteriol. doi:10.1128/JB.000412-13

    PubMed Central  PubMed  Google Scholar 

  • Iritani N, Vennema H, Siebenga JJ, Siezen RJ, Renckens B, Seto Y, Kaida A, Koopmans M (2008) Genetic analysis of the capsid gene of genotype GII. 2 noroviruses. J Virol 82:7336–7345

    Google Scholar 

  • Jochimsen EM, Carmichael WW, An JS et al (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Sako Y, Yoshida T (2013) Rapid gene diversification of Microcystis cyanophages revealed by long-and short-term genetic analysis of the tail sheath gene in a natural pond. Appl Environ Microbiol 79:2789–2795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koskella B, Thompson JN, Preston GM, Buckling A (2011) Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat 177:440–451

    Article  PubMed  Google Scholar 

  • Kuno S, Yoshida T, Kaneko T, Sako Y (2012) Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures. Appl Environ Microbiol 78:5353–5360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  • Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101:11013–11018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense Islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, Schuster SC, Henn MR, Martiny JBH (2012) Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 109:4544–4549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moisander PH, Lehman PW, Ochiai M, Corum S (2009) Diversity of Microcystis aeruginosa in the Klamath River and San Francisco Bay delta, California, USA. Aquat Microb Ecol 57:19–31

    Article  Google Scholar 

  • Ou T, Li S, Liao X, Zhang Q (2013) Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa. Virol Sin 28:266–271

    Article  CAS  PubMed  Google Scholar 

  • Raymond A, Shuman S (2007) Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5′-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick. Nucleic Acids Res 35:839–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado A-B, Beltran Rodriguez-Brito LP, Thingstad TM, Forest Rohwer AM (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    Article  CAS  PubMed  Google Scholar 

  • Sabart M, Pobel D, Latour D, Robin J, Salencon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272

    Article  CAS  PubMed  Google Scholar 

  • Sanmukh SG, Rahman M, Paunikar WN (2012) Comparative genomic studies of hypothetical proteins in cyanophages. Evolution 20:33

    Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:790–806

    Article  CAS  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses: major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Yoshida T, Yoshida M, Shirai Y, Tomaru Y, Takao Y, Hiroishi S, Nagasaki K (2007) Development and application of quantitative detection of cyanophages phylogenetically related to cyanophage Ma-LMM01 infecting Microcystis aeruginosa in fresh water. Microbes Environ 22:207–213

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tucker S, Pollard P (2005) Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A (2009) Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833–833

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Nakahara H (2009) Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology 10:185–193

    Article  Google Scholar 

  • Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K (2006) Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:1239–1247

    Google Scholar 

  • Yoshida M, Yoshida T, Kashima A, Takashima Y, Hosoda N, Nagasaki K, Hiroishi S (2008a) Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol 74:3269–3273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida T, Nagasaki K, Takashima Y, Shirai Y, Tomaru Y, Takao Y, Sakamoto S, Hiroishi S, Ogata H (2008b) Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 190:1762–1772

  • Yoshida-Takashima Y, Yoshida M, Ogata H, Nagasaki K, Hiroishi S, Yoshida T (2012) Cyanophage infection in the bloom-forming cyanobacteria Microcystis aeruginosa in surface freshwater. Microbes Environ 27:350–355

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by Grant-in-Aid for Scientific Research (B) (No. 20310045). We thank Takahiro Miyazako for sampling help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshida.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, G., Kimura, S., Sako, Y. et al. Genetic diversity of Microcystis cyanophages in two different freshwater environments. Arch Microbiol 196, 401–409 (2014). https://doi.org/10.1007/s00203-014-0980-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-0980-4

Keywords

Navigation