Abstract
Severe hypoxia leads to excess production of hydrogen sulfide in marine environments. In this study, we examined the effect of sulfide on growth of four facultative anaerobic marine bacteria in minimal media under anaerobic conditions. The Gram-negative chemolithoautotrophic Marinobacter sp. tolerated sulfide concentrations up to 0.60 mM, with doubling and lag times increasing as a function of increasing sulfide concentration but with no change in maximum culture yields; growth did not occur at 1.2 mM sulfide. Similar results were obtained for the metabolically diverse Gram-negative denitrifying Pseudomonas stutzeri, except that growth occurred at 1.2 mM and culture yields at 0.60 and 1.2 mM sulfide were approximately 10-fold lower than at sulfide concentrations between 0 and 0.30 mM. Increases in doubling and lag times accompanied by an overall 10-fold decrease in maximum culture yields were found for the Gram-negative chemoheterotrophic Vibrio sp. at all sulfide concentrations tested. In contrast, growth of a Gram-positive chemoheterotrophic Bacillus sp. was resistant to all sulfide concentrations tested (0.15–1.2 mM). Our results highlight the variable responses of marine bacteria to sulfide and provide some insight into shifts that may occur in microbial community structure and diversity as a consequence of changes in sulfide levels that are the result of hypoxia.
This is a preview of subscription content, access via your institution.


References
Almgren T, Hagström I (1974) The oxidation rate of sulphide in sea water. Water Res 8:395–400
Al-Zuhair S, El-Naas MH, Al-Hassani H (2008) Sulfate inhibition effect on sulfate reducing bacteria. J Biochem Technol 1:39–44
Baath E, Diaz-Ravina M, Frostegard S, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245
Babich H, Stotzky G (1978) Atmospheric sulfur compounds and microbes. Environ Res 15:513–531
Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicol 24:21–62
Brouwer H, Murphy T (1995) Volatile sulfides and their toxicity in freshwater sediments. Environ Toxicol Chem 14:203–208
Castenholz RW (1976) The effect of sulfide on the bluegreen algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68
Cohen Y, Jorgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407
Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Ann Rev Biochem 52:187–222
Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571
Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401
Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043. doi:10.1111/j.1574-6976.2009.00187.x
Gocke N, Hollocher TC, Bazylinski DA, Jannasch AW (1989) Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa. J Bacteriol 55:1023–1025
Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60:33–53
Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, Labrenz M, Jurgens K (2012) Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. PNAS 109:506–510. doi:10.1073/pnas.1111262109
Guidotti TL (1996) Hydrogen sulfide. Occup Med 46:367–371
Handley KM, Héry M, Lloyd JR (2009) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Evol Microbiol 59:886–892
Heijs SK, Axxoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, van Gemerden H (2000) Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23:85–95
Høgslund S, Revsbech NP, Cedhagen T, Nielsen LP, Gallardo VA (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic for aminiferans in the oxygen minimum zone off Chile. J Exp Marine Biolog Ecolog 359:85–91
Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72:5689–5701. doi:10.1128/AEM.03007-05
Jin R-C, Yang G-F, Zhang Q-Q, Ma C, Yu J-J, Xing B-S (2012) The effect of sulfide inhibition on the ANAMMOX process. Water Res 47:1459–1469
Jorgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, denmark). Appl Environ Microbiol 57:847–856
Kalciene V, Cetkauskaite A (2006) Effects of elemental sulfur and metal sulfides on Vibrio fischeri bacteria. Biologija 2:42–46
Knezovich J, Steichen D, Jelinski J, Anderson S (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull Environ Contam Toxicol 57:450–457
Koch MS, Mendelssohn IA, McKee KL (1990) Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol Oceanogr 35:399–408
Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco RF (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65:2256–2259
Koster I, Rinzema A, De Vegt A, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res 20:1561–1567
Kuster E, Dorusch F, Altenburger R (2005) Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmu svacuolatus, and Daphnia magna. Environ Toxicol Chem 24:2621–2629
Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547
Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs BM, Amann R, Lass U, Kuypers MM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–584. doi:10.1038/nature07588
Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi W, Neira C, Rabalais NN, Zhang J (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosci Discuss 6:3563–3654. doi:10.5194/bgd-6-3563-2009
Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462. doi:10.1016/j.tim.2006.08.003
Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C: Toxicol Pharmacol 153:175–190
Luther GW III, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Research Part A. Oceanogr Res Paper 38:S1121–S1137
Luther GW 3rd, Findlay AJ, Macdonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62. doi:10.3389/fmicb.2011.00062
Mahmood Q, Zheng P, Hu B, Jilani G, Azim MR, Wu D, Liu D (2009) Isolation and characterization of Pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor. Anaerobe 15:108–115
Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142
Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H (2010) Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl Environ Microbiol 76:4619–4625
Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675
Nakada Y, Ohta Y (1999) Purification and properties of hydrogen sulfide oxidase from Bacillus sp. BN53-1. J Biosci Bioeng 87:452–455
Nemati M, Jenneman G, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434
O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33:555–569
Okabe S, Nielsen P, Jones W, Characklis W (1995) Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res 29:571–578
Percheron G, Bernet N, Moletta R (1997) Start-up of anaerobic digestion of sulfate wastewater. Bioresour Technol 61:21–27
Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high Arctic. Appl Environ Microbiol 74:6898–6907
Postma JF, De Valk S, Dubbeldam M, Maas JL, Tonkes M, Schipper CA, Kater BJ (2002) Confounding factors in bioassays with freshwater and marine organisms. Ecotoxicol Environ Saf 53:226–237
Powell EN, Bright TJ, Brooks JM (1986) The effect of sulfide and an increased food supply on the meiofauna and macrofauna at the East Flower Garden brine seep. Helgol Mar Res 40:57–82
Proctor LM, Gunsalus RP (2000) Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. Environ Microbiol 2:399–406
Rehr B, Klemme J-H (1986) Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species. FEMS Microbiol Lett 35:325–328
Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134. doi:10.1146/annurev.pa.32.040192.000545
Reis MA, Almeida JS, Lemos PC, Carrondo MJ (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. doi:10.1002/bit.260400506
Ronnow PH, Gunnarsson LA (1981) Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium. Appl Environ Microbiol 42:580–584
Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Sci Signal 334:986
Sievert SM, Kiene R, Schulz H (2007) The sulfur cycle. Oceanography 20:117–123
Sigalevich P, Cohen Y (2000) Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in an aerated sulfate-depleted chemostat. Appl Environ Microbiol 66:5019–5023
Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ (2011) Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77:2763–2771
Sørensen J, Tiedje J, Firestone R (1980) Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl Environ Microbiol 39:105–108
Spangler WJ, Gilmour CM (1966) Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J Bacteriol 91:245–250
Storz G, Hengge R (2011) Bacterial stress responses. ASM Press, Washington
Van Leeuwen CJ, Maas-Diepeveen JL, Niebeek G, Vergouw WHA, Griffioen PS, Luijken MW (1985) Aquatic toxicological aspects of dithiocarbamates and related compounds. I. Short-term toxicity tests. Aquatic Toxicol 7:145–164. doi:10.1016/s0166-445x(85)80002-3
Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–15457. doi:10.1073/pnas.0803833105
Vaquer-Sunyer R, Duarte CM (2010) Sulfide exposure accelerates hypoxia-driven mortality. Limnol Oceanogr 55:1075–1082
Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
Yao W, Millero FH (1995) Oxidation of hydrogen sulfide by Mn(IV) and Fe(III)(hydr) oxides in seawater. In: Vairavamurthy MA, Schoonen MAA, Eglinton TI, Luther GW, Manowitz B (ed) Geochemical transformations of sedimentary sulfur. ACS Publications, Washington, pp 260–279. doi:10.1021/bk-1995-0612.ch014
Acknowledgments
We wish to thank Dr. Gary Wikfors and Dr. Russell Hill for providing strains and Dr. Kevin Sowers for guidance on anaerobic culture techniques. This work was supported, in part, by a grant from the US–Israel Binational Agriculture Research and Development Fund (MB-8720-08).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Erko Stackebrandt.
Rights and permissions
About this article
Cite this article
Mirzoyan, N., Schreier, H.J. Effect of sulfide on growth of marine bacteria. Arch Microbiol 196, 279–287 (2014). https://doi.org/10.1007/s00203-014-0968-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00203-014-0968-0
Keywords
- Doubling times
- Growth yields
- Environmental stress
- Growth curves