Effect of sulfide on growth of marine bacteria

Abstract

Severe hypoxia leads to excess production of hydrogen sulfide in marine environments. In this study, we examined the effect of sulfide on growth of four facultative anaerobic marine bacteria in minimal media under anaerobic conditions. The Gram-negative chemolithoautotrophic Marinobacter sp. tolerated sulfide concentrations up to 0.60 mM, with doubling and lag times increasing as a function of increasing sulfide concentration but with no change in maximum culture yields; growth did not occur at 1.2 mM sulfide. Similar results were obtained for the metabolically diverse Gram-negative denitrifying Pseudomonas stutzeri, except that growth occurred at 1.2 mM and culture yields at 0.60 and 1.2 mM sulfide were approximately 10-fold lower than at sulfide concentrations between 0 and 0.30 mM. Increases in doubling and lag times accompanied by an overall 10-fold decrease in maximum culture yields were found for the Gram-negative chemoheterotrophic Vibrio sp. at all sulfide concentrations tested. In contrast, growth of a Gram-positive chemoheterotrophic Bacillus sp. was resistant to all sulfide concentrations tested (0.15–1.2 mM). Our results highlight the variable responses of marine bacteria to sulfide and provide some insight into shifts that may occur in microbial community structure and diversity as a consequence of changes in sulfide levels that are the result of hypoxia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Almgren T, Hagström I (1974) The oxidation rate of sulphide in sea water. Water Res 8:395–400

    CAS  Article  Google Scholar 

  2. Al-Zuhair S, El-Naas MH, Al-Hassani H (2008) Sulfate inhibition effect on sulfate reducing bacteria. J Biochem Technol 1:39–44

    Google Scholar 

  3. Baath E, Diaz-Ravina M, Frostegard S, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Babich H, Stotzky G (1978) Atmospheric sulfur compounds and microbes. Environ Res 15:513–531

    CAS  PubMed  Article  Google Scholar 

  5. Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicol 24:21–62

    CAS  Article  Google Scholar 

  6. Brouwer H, Murphy T (1995) Volatile sulfides and their toxicity in freshwater sediments. Environ Toxicol Chem 14:203–208

    CAS  Article  Google Scholar 

  7. Castenholz RW (1976) The effect of sulfide on the bluegreen algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68

    CAS  Google Scholar 

  8. Cohen Y, Jorgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Ann Rev Biochem 52:187–222

    CAS  PubMed  Article  Google Scholar 

  10. Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    CAS  PubMed  Article  Google Scholar 

  11. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    CAS  PubMed  Article  Google Scholar 

  12. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043. doi:10.1111/j.1574-6976.2009.00187.x

    CAS  PubMed  Article  Google Scholar 

  13. Gocke N, Hollocher TC, Bazylinski DA, Jannasch AW (1989) Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa. J Bacteriol 55:1023–1025

    Google Scholar 

  14. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60:33–53

    CAS  Article  Google Scholar 

  15. Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, Labrenz M, Jurgens K (2012) Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. PNAS 109:506–510. doi:10.1073/pnas.1111262109

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Guidotti TL (1996) Hydrogen sulfide. Occup Med 46:367–371

    CAS  Article  Google Scholar 

  17. Handley KM, Héry M, Lloyd JR (2009) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Evol Microbiol 59:886–892

    CAS  Article  Google Scholar 

  18. Heijs SK, Axxoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, van Gemerden H (2000) Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23:85–95

    Article  Google Scholar 

  19. Høgslund S, Revsbech NP, Cedhagen T, Nielsen LP, Gallardo VA (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic for aminiferans in the oxygen minimum zone off Chile. J Exp Marine Biolog Ecolog 359:85–91

    Article  Google Scholar 

  20. Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72:5689–5701. doi:10.1128/AEM.03007-05

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Jin R-C, Yang G-F, Zhang Q-Q, Ma C, Yu J-J, Xing B-S (2012) The effect of sulfide inhibition on the ANAMMOX process. Water Res 47:1459–1469

    PubMed  Article  Google Scholar 

  22. Jorgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, denmark). Appl Environ Microbiol 57:847–856

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kalciene V, Cetkauskaite A (2006) Effects of elemental sulfur and metal sulfides on Vibrio fischeri bacteria. Biologija 2:42–46

    Google Scholar 

  24. Knezovich J, Steichen D, Jelinski J, Anderson S (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull Environ Contam Toxicol 57:450–457

    CAS  PubMed  Article  Google Scholar 

  25. Koch MS, Mendelssohn IA, McKee KL (1990) Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol Oceanogr 35:399–408

    CAS  Article  Google Scholar 

  26. Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco RF (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65:2256–2259

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Koster I, Rinzema A, De Vegt A, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res 20:1561–1567

    CAS  Article  Google Scholar 

  28. Kuster E, Dorusch F, Altenburger R (2005) Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmu svacuolatus, and Daphnia magna. Environ Toxicol Chem 24:2621–2629

    PubMed  Article  Google Scholar 

  29. Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs BM, Amann R, Lass U, Kuypers MM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–584. doi:10.1038/nature07588

    CAS  PubMed  Article  Google Scholar 

  31. Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi W, Neira C, Rabalais NN, Zhang J (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosci Discuss 6:3563–3654. doi:10.5194/bgd-6-3563-2009

    Article  Google Scholar 

  32. Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462. doi:10.1016/j.tim.2006.08.003

    CAS  PubMed  Article  Google Scholar 

  33. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C: Toxicol Pharmacol 153:175–190

    Google Scholar 

  34. Luther GW III, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Research Part A. Oceanogr Res Paper 38:S1121–S1137

    Article  Google Scholar 

  35. Luther GW 3rd, Findlay AJ, Macdonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62. doi:10.3389/fmicb.2011.00062

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Mahmood Q, Zheng P, Hu B, Jilani G, Azim MR, Wu D, Liu D (2009) Isolation and characterization of Pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor. Anaerobe 15:108–115

    CAS  PubMed  Article  Google Scholar 

  37. Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142

    CAS  PubMed  Article  Google Scholar 

  38. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H (2010) Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl Environ Microbiol 76:4619–4625

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Nakada Y, Ohta Y (1999) Purification and properties of hydrogen sulfide oxidase from Bacillus sp. BN53-1. J Biosci Bioeng 87:452–455

    CAS  PubMed  Article  Google Scholar 

  42. Nemati M, Jenneman G, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    CAS  PubMed  Article  Google Scholar 

  43. O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33:555–569

    Article  Google Scholar 

  44. Okabe S, Nielsen P, Jones W, Characklis W (1995) Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res 29:571–578

    CAS  Article  Google Scholar 

  45. Percheron G, Bernet N, Moletta R (1997) Start-up of anaerobic digestion of sulfate wastewater. Bioresour Technol 61:21–27

    CAS  Article  Google Scholar 

  46. Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high Arctic. Appl Environ Microbiol 74:6898–6907

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Postma JF, De Valk S, Dubbeldam M, Maas JL, Tonkes M, Schipper CA, Kater BJ (2002) Confounding factors in bioassays with freshwater and marine organisms. Ecotoxicol Environ Saf 53:226–237

    CAS  PubMed  Article  Google Scholar 

  48. Powell EN, Bright TJ, Brooks JM (1986) The effect of sulfide and an increased food supply on the meiofauna and macrofauna at the East Flower Garden brine seep. Helgol Mar Res 40:57–82

    Google Scholar 

  49. Proctor LM, Gunsalus RP (2000) Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications. Environ Microbiol 2:399–406

    CAS  PubMed  Article  Google Scholar 

  50. Rehr B, Klemme J-H (1986) Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species. FEMS Microbiol Lett 35:325–328

    CAS  Article  Google Scholar 

  51. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134. doi:10.1146/annurev.pa.32.040192.000545

    CAS  PubMed  Article  Google Scholar 

  52. Reis MA, Almeida JS, Lemos PC, Carrondo MJ (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. doi:10.1002/bit.260400506

    CAS  PubMed  Article  Google Scholar 

  53. Ronnow PH, Gunnarsson LA (1981) Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium. Appl Environ Microbiol 42:580–584

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Sci Signal 334:986

    CAS  Google Scholar 

  55. Sievert SM, Kiene R, Schulz H (2007) The sulfur cycle. Oceanography 20:117–123

    Article  Google Scholar 

  56. Sigalevich P, Cohen Y (2000) Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in an aerated sulfate-depleted chemostat. Appl Environ Microbiol 66:5019–5023

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ (2011) Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77:2763–2771

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Sørensen J, Tiedje J, Firestone R (1980) Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl Environ Microbiol 39:105–108

    PubMed Central  PubMed  Google Scholar 

  59. Spangler WJ, Gilmour CM (1966) Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J Bacteriol 91:245–250

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Storz G, Hengge R (2011) Bacterial stress responses. ASM Press, Washington

    Google Scholar 

  61. Van Leeuwen CJ, Maas-Diepeveen JL, Niebeek G, Vergouw WHA, Griffioen PS, Luijken MW (1985) Aquatic toxicological aspects of dithiocarbamates and related compounds. I. Short-term toxicity tests. Aquatic Toxicol 7:145–164. doi:10.1016/s0166-445x(85)80002-3

    Article  Google Scholar 

  62. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–15457. doi:10.1073/pnas.0803833105

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Vaquer-Sunyer R, Duarte CM (2010) Sulfide exposure accelerates hypoxia-driven mortality. Limnol Oceanogr 55:1075–1082

    CAS  Article  Google Scholar 

  64. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  65. Yao W, Millero FH (1995) Oxidation of hydrogen sulfide by Mn(IV) and Fe(III)(hydr) oxides in seawater. In: Vairavamurthy MA, Schoonen MAA, Eglinton TI, Luther GW, Manowitz B (ed) Geochemical transformations of sedimentary sulfur. ACS Publications, Washington, pp 260–279. doi:10.1021/bk-1995-0612.ch014

Download references

Acknowledgments

We wish to thank Dr. Gary Wikfors and Dr. Russell Hill for providing strains and Dr. Kevin Sowers for guidance on anaerobic culture techniques. This work was supported, in part, by a grant from the US–Israel Binational Agriculture Research and Development Fund (MB-8720-08).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harold J. Schreier.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirzoyan, N., Schreier, H.J. Effect of sulfide on growth of marine bacteria. Arch Microbiol 196, 279–287 (2014). https://doi.org/10.1007/s00203-014-0968-0

Download citation

Keywords

  • Doubling times
  • Growth yields
  • Environmental stress
  • Growth curves