Skip to main content
Log in

Widespread predatory abilities in the genus Streptomyces

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The natural role of antibiotics in the ecology of Streptomyces is debated and still largely unknown. The predatory myxobacteria and many other genera of prokaryotic epibiotic and wolfpack predators across different taxa possess secondary metabolites with antimicrobial action, and these compounds have a role in predation. If all epibiotic predators are antibiotic producers, it is worth testing whether all antibiotic producers are predators too. We show here that Streptomyces are non-obligate epibiotic predators of other microorganisms and that predatory abilities are widespread in this genus. We developed a test for predatory activity which revealed that a large proportion of traditionally isolated Streptomyces strains and all oligophilic Streptomyces isolates show predatory activity. Those that did not show predatory ability on first challenge could do so after many generations of selection or acclimation. Using time-lapse photomicrography, we demonstrate that the growth of the tips of Streptomyces hyphae is accompanied by disappearance of cells of other bacteria in the vicinity presumably due to lysis. Predatory activity is restricted to surface growth and is not obligately associated with antibiotic production in conventional culture. However, some of the genes crucial to the regulation of secondary metabolite pathways are differentially expressed during predatory growth on different prey species as compared to saprophytic growth. Our findings strengthen the association between epibiotic predation and antibiotic production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramoff M, Magelhaes P, Ram S (2004) Image processing with image. J Biophoto Int 11:36–42

    Google Scholar 

  • Adamidis T, Riggle P, Champness W (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adegboye M, Babalola O (2012) Taxonomy and ecology of antibiotic producing actinomycetes. Afr J Agri Res 7:2255–2261

    Google Scholar 

  • Baba T, Schneewind O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Baltz R (2007) Antimicrobials from actinomycetes: back to the future. Microbe Mag 2:125–131

    Google Scholar 

  • Banerjee A, Lin T, Hannapel D (2009) Ultratranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol 151:1831–1843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley S, Chater K, Cerdeno-Tarraga A, Challis G, Thomson N et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berleman J, Scott J, Chumley T, Kirby J (2008) Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci USA 105:17127–17132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casida L (1980) Bacterial predators of Micrococcus luteus in soil. Appl Environ Microbiol 39:1035–1041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casida L (1982) Ensifer adhaerens Gen. Nov., Sp. Nov.: a bacterial predator of bacteria in soil†. Int J Syst Bacteriol 32:339–345

    Article  Google Scholar 

  • Casida L (1983) Interaction of Agromyces ramosus with other bacteria in soil. Appl Environ Microbiol 46:881–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casida L (1988) Minireview: nonobligate bacterial predation of bacteria in soil. Microbial Ecol 15:1–8

    Article  Google Scholar 

  • Challis G, Hopwood D (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chater K, Biro S, Lee K, Palmer T, Schrempd H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Currie C (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380

    Article  CAS  PubMed  Google Scholar 

  • Currie C, Bot A, Boomsma J (2003a) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101:91–102

    Article  Google Scholar 

  • Currie C, Scott J, Summerbell R, Malloch D (2003b) Corrigendum: fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 423:461

    Article  CAS  Google Scholar 

  • Currie C, Poulsen M, Mendenhall J, Boomsma J, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83

    Article  CAS  PubMed  Google Scholar 

  • Dworkin M, Rosenberg E, Schleifer K (2006) The prokaryotes: ecophysiology and biochemistry, vol 2, 3rd edn. Springer Press, Singapore

    Book  Google Scholar 

  • Fredrickson A, Stephanopoulos G (1981) Microbial competition. Science 213:972–979

    Article  CAS  PubMed  Google Scholar 

  • Germida J, Casida L (1983) Ensifer adhaerens predatory activity against other bacteria in soil, as monitored by indirect phage analysis. Appl Environ Microbiol 45:1380–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodfellow M, Williams S (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29:987–1000

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Haslam E (1986) Secondary metabolism—fact and fiction. Nat Prod Rep 3:217–249

    Article  CAS  Google Scholar 

  • Hillesland K, Velicer G, Lenski R (2009) Experimental evolution of a microbial predator’s ability to find prey. Proc Biol Sci 276:459–467

    Article  PubMed Central  PubMed  Google Scholar 

  • Jayapal K, Lian W, Glod F, Sherman D, Hu W (2007) Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8:229

    Article  PubMed Central  PubMed  Google Scholar 

  • Jenke-Kodama H, Müller R, Dittmann E (2008) Evolutionary mechanisms underlying secondary metabolite diversity. Prog Drug Res 65(119):121–140

    Google Scholar 

  • Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Demain A (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolter R, Moreno F (1992) Genetics of ribosomally synthesized peptide antibiotics. Annu Rev Microbiol 46:141–161

    Article  CAS  PubMed  Google Scholar 

  • Kroiss J, Kaltenpoth M, Schneider B, Schwinger M, Hertweck C et al (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263

    Article  CAS  PubMed  Google Scholar 

  • Kumbhar C, Watve M (2013) Why antibiotics: a comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Nat Sci 5:26–40

    CAS  Google Scholar 

  • Linares J, Gustafsson I, Baquero F, Martinez J (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luckner M (1972) Secondary metabolism in plants and animals, 2nd edn. Springer, Berlin

    Google Scholar 

  • Malik V (1980) Microbial secondary metabolism. Trends Biochem Sci 5:68–72

    Article  CAS  Google Scholar 

  • Martin J, Demain A (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mothes K (1955) Physiology of alkaloids. Annu Rev Plant Physiol 6:393–432

    Article  CAS  Google Scholar 

  • Nett M, Ikeda H, Moore B (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nützmanna H, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108:14282–14287

    Article  Google Scholar 

  • Pérez J, Muñoz-Dorado J, Braña A, Shimkets L, Sevillano L, Santamaría R (2011) Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microbial Biotechnol 4:175–183

    Article  Google Scholar 

  • Robinson T (1974) Metabolism and function of alkaloids in plants. Science 184:430–435

    Article  CAS  PubMed  Google Scholar 

  • Rosamond J, Allsop A (2000) Harnessing the power of the genome in the search for new antibiotics. Science 287:1973–1976

    Article  CAS  PubMed  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmanna H, Shelest E, Schmidt-Heck W et al (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106:14558–14563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seigler D (1998) Plant secondary metabolism. Kluwer Academic publisher, Massachusetts, p 759

    Book  Google Scholar 

  • Straight P, Willey J, Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479–501

    Article  CAS  Google Scholar 

  • Turner W (1971) Fungal metabolites. Academic press, London, p 446

    Google Scholar 

  • Udwary D, Zeigler L, Asolkar R, Singan V, Lapidus A et al (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda K, Kawai S, Ogawa H, Kiyama A, Kubota T (2000) Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J Antibiot 53:979–982

    Article  CAS  PubMed  Google Scholar 

  • Vining L (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427

    Article  CAS  PubMed  Google Scholar 

  • Waksman S, Woodruff H (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42:231–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watve M, Kumbhar C (2007) Streptomyces sp. as predators of bacteria. Nat Preced. doi:10.1038/npre.2007.1263.2

  • Watve M, Shejval V, Sonawane C, Rahalkar M, Matapurkar A et al (2000) The “K” selected oligophilic bacteria: a key to uncultured diversity? Curr Sci 78:1535–1542

    Google Scholar 

  • Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  • Welsch M (1962) Bacteriolytic enzymes from streptomycetes: a review. J Gen Physiol 45:115–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams S, Vickers J (1986) The ecology of antibiotic production. Microb Ecol 12:43–52

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Stone M, Hauck P, Rahman S (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Culley D, Zhang W (2005) Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology 151:2175–2187

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Wei X, Ebright R, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193:4626–4633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Kouchiwa T, Hodoki Y, Hotta K, Uchida H, Harada K (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J Appl Phycol 10:391–397

    Article  Google Scholar 

  • Zeph L, Casida L (1986) Gram-negative versus gram-positive (actinomycete) nonobligate bacterial predators of bacteria in soil. Appl Environ Microbiol 52:819–823

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the material, technical, and intellectual contributions of Anjan Banerjee, Neelesh Dahanukar, Geeta Khaladkar, and Anagha Kale. We thank David Hopwood and Mervyn Bibb (John Innes Center) for the strain Streptomyces coelicolor A3(2) and Deepa Kanitkar of KanBiosys for the availability of some of the prey species. Earlier phase of the work was financed by LABINDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind Watve.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5248 kb)

Supplementary material 2 Growth of mycelial tips (advancing from the top downwards) accompanied by disappearance of prey cells (bottom half). The movie is created from time-lapse photomicrography at an interval of 10 minutes. (WMV 6521 kb)

Supplementary material 3 Growth of mycelial tips through uneven prey cell distribution, large clusters interspersed by scattered cells. Note that cell disappearance is faster in low cell density areas. The movie is created from time-lapse photomicrography at an interval of 10 minutes. (WMV 4923 kb)

Supplementary material 4 Difference in cell appearance and cell density away from and close to predator growth. The movie is a pan going from the center of the predator colony over the edge and away from it. Prey cell density was even before predator inoculation. After predator growth, no prey cells are visible within the predator colony, at the edge where growing mycelial tips can be seen a large proportion of prey cells are seen as dark flat disintegrated cells and farther away from the colony intact elevated appearance of prey cells is evident. (MPG 2206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumbhar, C., Mudliar, P., Bhatia, L. et al. Widespread predatory abilities in the genus Streptomyces . Arch Microbiol 196, 235–248 (2014). https://doi.org/10.1007/s00203-014-0961-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-0961-7

Keywords

Navigation