Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field

Abstract

A mesophilic, obligately anaerobic, propionate-producing fermentative bacterium, designated strain NM7T, was isolated from rural rice paddy field. Cells of strain NM7T are Gram-negative, non-motile, non-spore-forming, short rods, and negative for catalase. The strain grew optimally at 37 °C (the range for growth 15–40 °C) and pH 7.0 (pH 5.0–7.5). The strain could grow fermentatively on various sugars, including arabinose, xylose, fructose, galactose, glucose, mannose, cellobiose, lactose, maltose, sucrose, pectin and starch. The main end products of glucose fermentation were acetate and propionate. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe(III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of genomic DNA was 42.8 mol%. The major cellular fatty acids were C15:0, anteiso-C15:0, C16:0, and C17:0. The most abundant polar lipid of strain NM7T was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that it belongs to the family Porphyromonadaceae of the phylum Bacteroidetes. The closest recognized species was Paludibacter propionicigenes (91.4 % similarity in 16S rRNA gene sequence). A novel species, Paludibacter jiangxiensis sp. nov., is proposed to accommodate strain NM7T (=JCM 17480T = CGMCC 1.5150T = KCTC 5844T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akasaka H, Izawa T, Ueki K, Ueki A (2003) Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161

    CAS  PubMed  Article  Google Scholar 

  2. Chen S, Dong X (2005) Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261

    CAS  PubMed  Article  Google Scholar 

  3. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33

    Google Scholar 

  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  5. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    CAS  PubMed  Article  Google Scholar 

  6. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    CAS  PubMed  Article  Google Scholar 

  7. Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213

    CAS  PubMed  Article  Google Scholar 

  8. Hofstad T, Olsen I, Eribe ER, Falsen E, Collins MD, Lawson PA (2000) Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Microbiol 50:2189–2195

    CAS  PubMed  Article  Google Scholar 

  9. Hong PY, Wu JH, Liu WT (2008) Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol 74:2882–2893

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Kaku N, Ueki A, Fujii H, Ueki K (2000) Methanogenic activities on rice roots and plant residue and their contributions to methanogenesis in wetland rice field soil. Soil Biol Biotechem 32:2001–2010

    CAS  Article  Google Scholar 

  11. Kamagata Y, Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196

    Article  Google Scholar 

  12. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME 6:1378–1390

    CAS  Article  Google Scholar 

  13. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71(12):7819–7830

    PubMed Central  PubMed  Article  Google Scholar 

  14. Krieg NR (2011) Family IV. Porphyromonadaceae fam. nov. In: Krieg NR, Ludwig W, Euzéby J, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol. 4 (2nd ed.) edn. Springer, New York, p 61

    Google Scholar 

  15. Lawson PA, Falsen E, Inganäs E, Weyant RS, Collins MD (2002) Dysgonomonas mossii sp. nov., from human sources. Syst appl microbiol 25(2):194–197

    CAS  PubMed  Article  Google Scholar 

  16. Ludwig W, Euzéby J, Whitman WB (2010) Road map of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 1–19

    Google Scholar 

  17. Narihiro T, Terada T, Kikuchi K, Iguchi A, Ikeda M, Yamauchi T, Shiraishi K, Kamagata Y, Nakamura K, Sekiguchi Y (2009) Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ 24(2):88–96

    PubMed  Article  Google Scholar 

  18. O’Sullivan LA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ (2004) Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47(3):359–370

    PubMed  Article  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  20. Sakamoto M, Benno Y (2006) Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605

    CAS  PubMed  Article  Google Scholar 

  21. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y et al (2002) Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849

    CAS  PubMed  Article  Google Scholar 

  22. Sakamoto M, Suzuki N, Matsunaga N, Koshihara K, Seki M, Komiya H, Benno Y (2009a) Parabacteroides gordonii sp. nov., isolated from human blood cultures. Int J Syst Evol Microbiol 59:2843–2847

    CAS  PubMed  Article  Google Scholar 

  23. Sakamoto M, Takagaki A, Matsumoto K, Kato Y, Goto K, Benno Y (2009b) Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol 59:1748–1753

    CAS  PubMed  Article  Google Scholar 

  24. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779

    CAS  PubMed  Article  Google Scholar 

  25. Shintani T, Liu WT, Hanada S, Kamagata Y, Miyaoka S, Suzuki T, Nakamura K (2000) Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207

    CAS  PubMed  Article  Google Scholar 

  26. Song Y, Liu C, Lee J, Bolanos M, Vaisanen ML, Finegold SM (2005) “Bacteroides goldsteinii” sp. nov. isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Stevens H, Stǔbner M, Simon M, Brinkhoff T (2005) Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of at tidal flat ecosystem. FEMS Microbiol Ecol 54:351–365

    CAS  PubMed  Article  Google Scholar 

  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    CAS  PubMed  Article  Google Scholar 

  29. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  30. Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44

    CAS  PubMed  Article  Google Scholar 

  31. Weber S, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mizuho Muramatsu in the National Institute of Advanced Industrial Science and Technology for the determinations of FAME and the DNA base composition. This work was supported by the Taishan Scholar Program of Shandong Province, the National Natural Science Foundation of China (51078344), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2010BAC67B03), and the Program Foundation for the Talent Introduction by Qingdao City (11-2-4-15-YX).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Qiu.

Additional information

Nucleotide sequence accession number: The GenBank/EMBL/DDBJ accession number of the 16S rRNA gene sequence of strain NM7T is GQ911566.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiu, YL., Kuang, XZ., Shi, XS. et al. Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Arch Microbiol 196, 149–155 (2014). https://doi.org/10.1007/s00203-013-0951-1

Download citation

Keywords

  • Propionate production
  • Paludibacter jiangxiensis
  • Porphyromonadaceae
  • Bacteroidetes