Archives of Microbiology

, Volume 196, Issue 1, pp 17–23 | Cite as

The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis

  • Kazuki Kawaguchi
  • Takeshi Senoura
  • Shigeaki Ito
  • Toki Taira
  • Hiroyuki Ito
  • Jun Wasaki
  • Susumu ItoEmail author
Original Paper


We have proposed a new mannan catabolic pathway in Bacteroides fragilis NCTC 9343 that involves a putative mannanase ManA in glycoside hydrolase family 26 (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772). If this hypothesis is correct, ManA has to generate mannobiose from mannans as the major end product. In this study, the BF0771 gene from the B. fragilis genome was cloned and expressed in Escherichia coli cells. The expressed protein was found to produce mannobiose exclusively from mannans and initially from manno-oligosaccharides. Production of 4-O-β-d-glucopyranosyl-d-mannose or 4-O-β-d-mannopyranosyl-d-glucose from mannans was not detectable. The results indicate that this enzyme is a novel mannobiose-forming exo-mannanase, consistent with the new microbial mannan catabolic pathway we proposed.


Bacteroides fragilis Mannanase Mannobiose 2-epimerase Mannosylglucose phosphorylase 



This study was partly supported by the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Supplementary material

203_2013_938_MOESM1_ESM.pptx (1.1 mb)
Supplementary material 1 (PPTX 1103 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ (2001) Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry 40:2468–2477PubMedCrossRefGoogle Scholar
  3. Boraston AB, Revett TJ, Boraston CM, Nurizzo D, Davies GJ (2003) Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure 11:665–675PubMedCrossRefGoogle Scholar
  4. Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ (1995) A non-modular endo-β-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305:1005–1010PubMedGoogle Scholar
  5. Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, Gilbert HJ (2008) The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem 283:34403–34413PubMedCrossRefGoogle Scholar
  6. Centeno MSJ, Guerreiro CIPD, Dias FMV, Morland C, Tailford LE, Goyal A, Prates JAM, Ferreira LMA, Caldeira RMH, Mongodin EF, Nelson KE, Gilbert HJ, Fontes CMGA (2006) Galactomannan hydrolysis and mannose metabolismin Cellvibrio mixtus. FEMS Microbiol Lett 261:123–132PubMedCrossRefGoogle Scholar
  7. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465PubMedCrossRefGoogle Scholar
  8. Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246PubMedCentralPubMedCrossRefGoogle Scholar
  9. DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson J, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE (2008) Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 190:5455–5463PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dias FMV, Vincent F, Pell G, Prates JAM, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 279:25517–25526PubMedCrossRefGoogle Scholar
  11. Halstead JR, Vercoe PE, Gilbert HJ, Davidson K, Hazlewood GP (1999) A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145:3101–3108PubMedGoogle Scholar
  12. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y, Grant WD, Ito S, Horikoshi K (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. Strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500PubMedCrossRefGoogle Scholar
  13. Hogg D, Pell G, Dupree P, Goubet F, Martín-Orúe SM, Armand S, Gilbert HJ (2005) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371:1027–1043CrossRefGoogle Scholar
  14. Ito S (2009) Features and applications of microbial sugar epimerases. Appl Microbiol Biotechnol 84:1053–1060PubMedCrossRefGoogle Scholar
  15. Ito S, Hamada S, Yamaguchi K, Umene S, Ito H, Matsui H, Ozawa T, Taguchi H, Watanabe J, Wasaki J, Ito S (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem Biophys Res Commun 360:640–645PubMedCrossRefGoogle Scholar
  16. Ito S, Taguchi H, Hamada S, Kawauchi S, Ito H, Senoura T, Watanabe J, Nishimukai M, Ito S, Matsui H (2008) Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol 79:433–441PubMedCrossRefGoogle Scholar
  17. Le Nours J, Anderson L, Stoll D, Stålbrand H, Leggio L (2005) The structure and characterization of a modular endo-β-1,4-mannanase from Cellulomonas fimi. Biochemistry 44:12700–12708PubMedCrossRefGoogle Scholar
  18. McCleary BV (1988) Carob and guar galactomannans. Methods Enzymol 160:523–527Google Scholar
  19. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 3:426–428CrossRefGoogle Scholar
  20. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178PubMedCrossRefGoogle Scholar
  21. Senoura T, Taguchi H, Ito S, Hamada S, Matsui H, Watanabe J, Wasaki J, Ito S (2009) Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci Biotechnol Biochem 72:400–406CrossRefGoogle Scholar
  22. Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, Ito S (2011) New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun 408:701–706PubMedCrossRefGoogle Scholar
  23. Stoll D, Stålbrand H, Warren RA (1999) Mannan-degrading enzymes from Cellulomonas fimi. Appl Environ Microbiol 65:2598–2605PubMedCentralPubMedGoogle Scholar
  24. Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ (2007) Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the β-mannosidase, BtMan2A. J Biol Chem 282:11291–11299PubMedCrossRefGoogle Scholar
  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kazuki Kawaguchi
    • 1
  • Takeshi Senoura
    • 2
  • Shigeaki Ito
    • 3
  • Toki Taira
    • 1
  • Hiroyuki Ito
    • 4
  • Jun Wasaki
    • 5
  • Susumu Ito
    • 1
    Email author
  1. 1.Department of Bioscience and Biotechnology, Faculty of AgricultureUniversity of the RyukyusNishiharaJapan
  2. 2.Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiJapan
  3. 3.Tobacco Science Research CenterJapan Tobacco Inc.YokohamaJapan
  4. 4.Department of Applied ChemistryAkita National College of TechnologyAkitaJapan
  5. 5.Graduate School of Biosphere ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations