Skip to main content
Log in

Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short-chain fatty acids

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186. doi:10.1128/JB.183.7.2178-2186.2001

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn D, Phillips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216

    PubMed  CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    PubMed  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-beta-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685. doi:10.1016/j.biotechadv.2009.04.026

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein H, Bellemann P, Walter S, Zeller W, Geider K (1988) Identification of Erwinia amylovora, the fire blight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl Environ Microbiol 54:2798–2802

    PubMed  CAS  Google Scholar 

  • Fischer K (2002) Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography. Anal Chim Acta 465:157–173

    Article  CAS  Google Scholar 

  • Han K, Lim HC, Hong J (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671. doi:10.1002/bit.260390611

    Article  PubMed  CAS  Google Scholar 

  • Hickey EW, Hirshfield IN (1990) Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium. Appl Environ Microbiol 56:1038–1045

    PubMed  CAS  Google Scholar 

  • Jakovljevic V, Jock S, Du Z, Geider K (2008) Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Microb Biotechnol 1:416–424. doi:10.1111/j.1751-7915.2008.00043.x

    Article  PubMed  CAS  Google Scholar 

  • Kunz S (2006) Fire blight control in organic fruit growing – systematic investigation of the mode of action of potential control agents. In: Zeller W, Ullrich C (eds) Proceedings of the 1st International Symposium on biological control of bacterial plant diseases. Biologische Bundesanstalt für Land- und Forstwirtschaft (bba), Berlin-Dahlem, pp 249–253

  • Meyer H-P, Leist C, Fiechter A (1984) Acetate formation in continuous culture of Escherichia coli K12 D1 on defined and complex media. J Biotechnol 1:355–358. doi:org/10.1016/0168-1656(84)90027-0

    Article  CAS  Google Scholar 

  • Mohammadi M, Moltmann E, Zeller W, Geider K (2009) Characterisation of naturally occurring Erwinia amylovora strains lacking the common plasmid pEA29 and their detection with real-time PCR. Eur J Plant Pathol 124:293–302. doi:10.1007/s10658-008-9417-8

    Article  CAS  Google Scholar 

  • Oestling CE, Lindgren SE (1993) Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. J Appl Bacteriol 75:18–24

    Article  CAS  Google Scholar 

  • Psallidas PG, Tsiantos J (2000) Chemical control of fire blight. In: Vanneste J (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI, Wallingford, pp 199–234

    Chapter  Google Scholar 

  • Pusey PL, Stockwell VO, Rudell DR (2008) Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98:1136–1143. doi:10.1094/PHYTO-98-10-1136

    Article  PubMed  CAS  Google Scholar 

  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    PubMed  CAS  Google Scholar 

  • Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772

    PubMed  CAS  Google Scholar 

  • Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222

    PubMed  CAS  Google Scholar 

  • Samel U-R, Kohler W, Gamer AO, Keuser U (2000) Propionic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

  • Sholberg PL, Gaunce AP, Owen GR (1988) Occurrence of Erwinia amylovora of pome fruit in British Columbia in 1985 and its elimination from the apple surface. Can J Plant Pathol 10:178–182. doi:10.1080/07060668809501751

    Article  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 92:1202–1209. doi:10.1094/PHYTO.2002.92.11.1202

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Fukamachi T, Saito H, Kobayashi H (2011) ATP requirement for acidic resistance in Escherichia coli. J Bacteriol 193:3072–3077. doi:10.1128/JB.00091-11

    Article  PubMed  CAS  Google Scholar 

  • Trias R, Baneras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236

    PubMed  CAS  Google Scholar 

  • Wensing A, Gernold M, Geider K (2012) Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. J Appl Microbiol 112:147–158. doi:10.1111/j.1365-2672.2011.05165.x

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24. doi:10.1016/j.ijfoodmicro.2007.11.077

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank David L. Coplin and Bernd Schneider for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Geider.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konecki, K., Gernold, M., Wensing, A. et al. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short-chain fatty acids. Arch Microbiol 195, 759–764 (2013). https://doi.org/10.1007/s00203-013-0928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0928-0

Keywords

Navigation